BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 33563824)

  • 21. Identification of genes required for synthesis of the adhesive holdfast in Caulobacter crescentus.
    Smith CS; Hinz A; Bodenmiller D; Larson DE; Brun YV
    J Bacteriol; 2003 Feb; 185(4):1432-42. PubMed ID: 12562815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A cryptic transcription factor regulates Caulobacter adhesin development.
    McLaughlin M; Hershey DM; Reyes Ruiz LM; Fiebig A; Crosson S
    PLoS Genet; 2022 Oct; 18(10):e1010481. PubMed ID: 36315598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing flagellar promoter occupancy in wild-type and mutant Caulobacter crescentus by chromatin immunoprecipitation.
    Davis NJ; Viollier PH
    FEMS Microbiol Lett; 2011 Jun; 319(2):146-52. PubMed ID: 21457294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of the Caulobacter flagellar gene hierarchy; not just for motility.
    Wu J; Newton A
    Mol Microbiol; 1997 Apr; 24(2):233-9. PubMed ID: 9159510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk.
    Cole JL; Hardy GG; Bodenmiller D; Toh E; Hinz A; Brun YV
    Mol Microbiol; 2003 Sep; 49(6):1671-83. PubMed ID: 12950929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps.
    Toh E; Kurtz HD; Brun YV
    J Bacteriol; 2008 Nov; 190(21):7219-31. PubMed ID: 18757530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development.
    Levi A; Jenal U
    J Bacteriol; 2006 Jul; 188(14):5315-8. PubMed ID: 16816207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of bacterial surface attachment by a network of sensory transduction proteins.
    Reyes Ruiz LM; Fiebig A; Crosson S
    PLoS Genet; 2019 May; 15(5):e1008022. PubMed ID: 31075103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole.
    Hardy GG; Allen RC; Toh E; Long M; Brown PJ; Cole-Tobian JL; Brun YV
    Mol Microbiol; 2010 Apr; 76(2):409-27. PubMed ID: 20233308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FlbT couples flagellum assembly to gene expression in Caulobacter crescentus.
    Mangan EK; Malakooti J; Caballero A; Anderson P; Ely B; Gober JW
    J Bacteriol; 1999 Oct; 181(19):6160-70. PubMed ID: 10498731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HfaE Is a Component of the Holdfast Anchor Complex That Tethers the Holdfast Adhesin to the Cell Envelope.
    Chepkwony NK; Hardy GG; Brun YV
    J Bacteriol; 2022 Nov; 204(11):e0027322. PubMed ID: 36165621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PflI, a protein involved in flagellar positioning in Caulobacter crescentus.
    Obuchowski PL; Jacobs-Wagner C
    J Bacteriol; 2008 Mar; 190(5):1718-29. PubMed ID: 18165296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators.
    Nesper J; Hug I; Kato S; Hee CS; Habazettl JM; Manfredi P; Grzesiek S; Schirmer T; Emonet T; Jenal U
    Elife; 2017 Nov; 6():. PubMed ID: 29091032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Layered Structure and Complex Mechanochemistry Underlie Strength and Versatility in a Bacterial Adhesive.
    Hernando-Pérez M; Setayeshgar S; Hou Y; Temam R; Brun YV; Dragnea B; Berne C
    mBio; 2018 Feb; 9(1):. PubMed ID: 29437925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bypassing the need for subcellular localization of a polysaccharide export-anchor complex by overexpressing its protein subunits.
    Javens J; Wan Z; Hardy GG; Brun YV
    Mol Microbiol; 2013 Jul; 89(2):350-71. PubMed ID: 23714375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Chaperone for the Stator Units of a Bacterial Flagellum.
    Ribardo DA; Kelley BR; Johnson JG; Hendrixson DR
    mBio; 2019 Aug; 10(4):. PubMed ID: 31387912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interplay between flagellation and cell cycle control in Caulobacter.
    Ardissone S; Viollier PH
    Curr Opin Microbiol; 2015 Dec; 28():83-92. PubMed ID: 26476805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus.
    Muir RE; Gober JW
    Mol Microbiol; 2002 Feb; 43(3):597-615. PubMed ID: 11929518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase.
    Wan Z; Brown PJ; Elliott EN; Brun YV
    Mol Microbiol; 2013 May; 88(3):486-500. PubMed ID: 23517529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria.
    Lori C; Kaczmarczyk A; de Jong I; Jenal U
    mBio; 2018 May; 9(3):. PubMed ID: 29789370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.