BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 33563841)

  • 21.
    Lee SQE; Ma GL; Candra H; Khandelwal S; Pang LM; Low ZJ; Cheang QW; Liang ZX
    ACS Synth Biol; 2024 Apr; 13(4):1259-1272. PubMed ID: 38513222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of cryptic phthoxazolin A production in Streptomyces avermitilis by the disruption of autoregulator-receptor homologue AvaR3.
    Suroto DA; Kitani S; Miyamoto KT; Sakihama Y; Arai M; Ikeda H; Nihira T
    J Biosci Bioeng; 2017 Dec; 124(6):611-617. PubMed ID: 28728974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Widespread predatory abilities in the genus Streptomyces.
    Kumbhar C; Mudliar P; Bhatia L; Kshirsagar A; Watve M
    Arch Microbiol; 2014 Apr; 196(4):235-48. PubMed ID: 24535490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact on Multiple Antibiotic Pathways Reveals MtrA as a Master Regulator of Antibiotic Production in
    Zhu Y; Zhang P; Zhang J; Wang J; Lu Y; Pang X
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32801172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Leeuwenhoek lecture, 1987. Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production.
    Hopwood DA
    Proc R Soc Lond B Biol Sci; 1988 Nov; 235(1279):121-38. PubMed ID: 2907142
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus.
    Lee N; Kim W; Chung J; Lee Y; Cho S; Jang KS; Kim SC; Palsson B; Cho BK
    ISME J; 2020 May; 14(5):1111-1124. PubMed ID: 31992858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical ecology of antibiotic production by actinomycetes.
    van der Meij A; Worsley SF; Hutchings MI; van Wezel GP
    FEMS Microbiol Rev; 2017 May; 41(3):392-416. PubMed ID: 28521336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transposon-based identification of a negative regulator for the antibiotic hyper-production in Streptomyces.
    Luo S; Chen XA; Mao XM; Li YQ
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6581-6592. PubMed ID: 29876602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis.
    Barger SR; Hoefler BC; Cubillos-Ruiz A; Russell WK; Russell DH; Straight PD
    Antonie Van Leeuwenhoek; 2012 Oct; 102(3):435-45. PubMed ID: 22777252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic perturbation to enhance polyketide and nonribosomal peptide antibiotic production using triclosan and ribosome-targeting drugs.
    Tanaka Y; Izawa M; Hiraga Y; Misaki Y; Watanabe T; Ochi K
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4417-4431. PubMed ID: 28293709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory
    Thomy D; Culp E; Adamek M; Cheng EY; Ziemert N; Wright GD; Sass P; Brötz-Oesterhelt H
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31399403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Elements of regulatory systems of antibiotic biosynthesis in Streptomyces].
    Tabakov VIu; Voeĭkova TA
    Genetika; 1997 Nov; 33(11):1461-77. PubMed ID: 9480210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broad-Host-Range Expression Reveals Native and Host Regulatory Elements That Influence Heterologous Antibiotic Production in Gram-Negative Bacteria.
    Zhang JJ; Tang X; Zhang M; Nguyen D; Moore BS
    mBio; 2017 Sep; 8(5):. PubMed ID: 28874475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Secondary Metabolite Production Potential of Mangrove-Derived
    Hu D; Lee SM; Li K; Mok KM
    Mar Drugs; 2021 Jun; 19(6):. PubMed ID: 34201365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype among Streptomyces spp.
    Vaz Jauri P; Kinkel LL
    FEMS Microbiol Ecol; 2014 Oct; 90(1):264-75. PubMed ID: 25098381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibiotic production in
    Zhang Z; Du C; de Barsy F; Liem M; Liakopoulos A; van Wezel GP; Choi YH; Claessen D; Rozen DE
    Sci Adv; 2020 Jan; 6(3):eaay5781. PubMed ID: 31998842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species.
    Challis GL; Hopwood DA
    Proc Natl Acad Sci U S A; 2003 Nov; 100 Suppl 2(Suppl 2):14555-61. PubMed ID: 12970466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors.
    Garbeva P; Silby MW; Raaijmakers JM; Levy SB; Boer Wd
    ISME J; 2011 Jun; 5(6):973-85. PubMed ID: 21228890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-component systems in Streptomyces: key regulators of antibiotic complex pathways.
    Rodríguez H; Rico S; Díaz M; Santamaría RI
    Microb Cell Fact; 2013 Dec; 12():127. PubMed ID: 24354561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365.
    Iftime D; Kulik A; Härtner T; Rohrer S; Niedermeyer TH; Stegmann E; Weber T; Wohlleben W
    J Ind Microbiol Biotechnol; 2016 Mar; 43(2-3):277-91. PubMed ID: 26433383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.