BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33564062)

  • 1. One-step photonic curing of screen-printed conductive Ni flake electrodes for use in flexible electronics.
    Altay BN; Turkani VS; Pekarovicova A; Fleming PD; Atashbar MZ; Bolduc M; Cloutier SG
    Sci Rep; 2021 Feb; 11(1):3393. PubMed ID: 33564062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic Curing of Low-Cost Aqueous Silver Flake Inks for Printed Conductors with Increased Yield.
    Cronin HM; Stoeva Z; Brown M; Shkunov M; Silva SRP
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21398-21410. PubMed ID: 29863321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
    Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive Silver Oxalate Ink Composition with Enhanced Curing Conditions for Flexible Substrates.
    Zope KR; Cormier D; Williams SA
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3830-3837. PubMed ID: 29303549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inkjet Printing of Flexible Transparent Conductive Films with Silver Nanowires Ink.
    Wu X; Wang S; Luo Z; Lu J; Lin K; Xie H; Wang Y; Li JZ
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34203673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet-Printed Silver Nanowire Ink for Flexible Transparent Conductive Film Applications.
    Wang S; Wu X; Lu J; Luo Z; Xie H; Zhang X; Lin K; Wang Y
    Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes.
    Fernandes IJ; Aroche AF; Schuck A; Lamberty P; Peter CR; Hasenkamp W; Rocha TLAC
    Sci Rep; 2020 Jun; 10(1):8878. PubMed ID: 32483302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printed Strain Gauge on 3D and Low-Melting Point Plastic Surface by Aerosol Jet Printing and Photonic Curing.
    Borghetti M; Serpelloni M; Sardini E
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.
    Kell AJ; Paquet C; Mozenson O; Djavani-Tabrizi I; Deore B; Liu X; Lopinski GP; James R; Hettak K; Shaker J; Momciu A; Ferrigno J; Ferrand O; Hu JX; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2017 May; 9(20):17226-17237. PubMed ID: 28466636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydimethylsiloxane-Assisted Catalytic Printing for Highly Conductive, Adhesive, and Precise Metal Patterns Enabled on Paper and Textiles.
    Guo R; Li H; Wang H; Zhao X; Yu H; Ye Q
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56597-56606. PubMed ID: 34784187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic Flash Sintering of Ink-Jet-Printed Back Electrodes for Organic Photovoltaic Applications.
    Polino G; Shanmugam S; Bex GJ; Abbel R; Brunetti F; Di Carlo A; Andriessen R; Galagan Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2325-35. PubMed ID: 26704172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printing the Ultra-Long Ag Nanowires Inks onto the Flexible Textile Substrate for Stretchable Electronics.
    Ke SH; Xue QW; Pang CY; Guo PW; Yao WJ; Zhu HP; Wu W
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052576
    [No Abstract]   [Full Text] [Related]  

  • 19. Photonic Curing Enables Ultrarapid Processing of Highly Conducting β-Cu
    Mallick MM; Franke L; Rösch AG; Geßwein H; Eggeler YM; Lemmer U
    ACS Omega; 2022 Mar; 7(12):10695-10700. PubMed ID: 35382328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures.
    Tomotoshi D; Oogami R; Kawasaki H
    ACS Appl Mater Interfaces; 2021 May; 13(17):20906-20915. PubMed ID: 33891413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.