BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33564095)

  • 1. Persistent hepatocyte apoptosis promotes tumorigenesis from diethylnitrosamine-transformed hepatocytes through increased oxidative stress, independent of compensatory liver regeneration.
    Nozaki Y; Hikita H; Tanaka S; Fukumoto K; Urabe M; Sato K; Myojin Y; Doi A; Murai K; Sakane S; Saito Y; Kodama T; Sakamori R; Tatsumi T; Takehara T
    Sci Rep; 2021 Feb; 11(1):3363. PubMed ID: 33564095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caspase-3 suppresses diethylnitrosamine-induced hepatocyte death, compensatory proliferation and hepatocarcinogenesis through inhibiting p38 activation.
    Shang N; Bank T; Ding X; Breslin P; Li J; Shi B; Qiu W
    Cell Death Dis; 2018 May; 9(5):558. PubMed ID: 29752472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis.
    Maeda S; Kamata H; Luo JL; Leffert H; Karin M
    Cell; 2005 Jul; 121(7):977-90. PubMed ID: 15989949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH Oxidase 1 in Liver Macrophages Promotes Inflammation and Tumor Development in Mice.
    Liang S; Ma HY; Zhong Z; Dhar D; Liu X; Xu J; Koyama Y; Nishio T; Karin D; Karin G; Mccubbin R; Zhang C; Hu R; Yang G; Chen L; Ganguly S; Lan T; Karin M; Kisseleva T; Brenner DA
    Gastroenterology; 2019 Mar; 156(4):1156-1172.e6. PubMed ID: 30445007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms.
    Esparza-Baquer A; Labiano I; Sharif O; Agirre-Lizaso A; Oakley F; Rodrigues PM; Zhuravleva E; O'Rourke CJ; Hijona E; Jimenez-Agüero R; Riaño I; Landa A; La Casta A; Zaki MYW; Munoz-Garrido P; Azkargorta M; Elortza F; Vogel A; Schabbauer G; Aspichueta P; Andersen JB; Knapp S; Mann DA; Bujanda L; Banales JM; Perugorria MJ
    Gut; 2021 Jul; 70(7):1345-1361. PubMed ID: 32907830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatocyte-specific Bid depletion reduces tumor development by suppressing inflammation-related compensatory proliferation.
    Wree A; Johnson CD; Font-Burgada J; Eguchi A; Povero D; Karin M; Feldstein AE
    Cell Death Differ; 2015 Dec; 22(12):1985-94. PubMed ID: 25909884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mice With Increased Numbers of Polyploid Hepatocytes Maintain Regenerative Capacity But Develop Fewer Hepatocellular Carcinomas Following Chronic Liver Injury.
    Lin YH; Zhang S; Zhu M; Lu T; Chen K; Wen Z; Wang S; Xiao G; Luo D; Jia Y; Li L; MacConmara M; Hoshida Y; Singal AG; Yopp A; Wang T; Zhu H
    Gastroenterology; 2020 May; 158(6):1698-1712.e14. PubMed ID: 31972235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gab1 in livers with persistent hepatocyte apoptosis has an antiapoptotic effect and reduces chronic liver injury, fibrosis, and tumorigenesis.
    Mizutani N; Hikita H; Saito Y; Myojin Y; Sato K; Urabe M; Kurahashi T; Shiode Y; Sakane S; Murai K; Nozaki Y; Kodama T; Sakamori R; Yoshida Y; Tatsumi T; Takehara T
    Am J Physiol Gastrointest Liver Physiol; 2021 Jun; 320(6):G958-G968. PubMed ID: 33787344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation.
    Sakurai T; Maeda S; Chang L; Karin M
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10544-51. PubMed ID: 16807293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the Mitochondrial Apoptotic Pathway Produces Reactive Oxygen Species and Oxidative Damage in Hepatocytes That Contribute to Liver Tumorigenesis.
    Hikita H; Kodama T; Tanaka S; Saito Y; Nozaki Y; Nakabori T; Shimizu S; Hayashi Y; Li W; Shigekawa M; Sakamori R; Miyagi T; Hiramatsu N; Tatsumi T; Takehara T
    Cancer Prev Res (Phila); 2015 Aug; 8(8):693-701. PubMed ID: 26038117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of p53 renders ATM-deficient mice refractory to hepatocarcinogenesis.
    Teoh N; Pyakurel P; Dan YY; Swisshelm K; Hou J; Mitchell C; Fausto N; Gu Y; Farrell G
    Gastroenterology; 2010 Mar; 138(3):1155-65.e1-2. PubMed ID: 19919837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional beta-catenin loss in mice promotes chemical hepatocarcinogenesis: role of oxidative stress and platelet-derived growth factor receptor alpha/phosphoinositide 3-kinase signaling.
    Zhang XF; Tan X; Zeng G; Misse A; Singh S; Kim Y; Klaunig JE; Monga SP
    Hepatology; 2010 Sep; 52(3):954-65. PubMed ID: 20583210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bak deficiency inhibits liver carcinogenesis: a causal link between apoptosis and carcinogenesis.
    Hikita H; Kodama T; Shimizu S; Li W; Shigekawa M; Tanaka S; Hosui A; Miyagi T; Tatsumi T; Kanto T; Hiramatsu N; Morii E; Hayashi N; Takehara T
    J Hepatol; 2012 Jul; 57(1):92-100. PubMed ID: 22414765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockdown of Anillin Actin Binding Protein Blocks Cytokinesis in Hepatocytes and Reduces Liver Tumor Development in Mice Without Affecting Regeneration.
    Zhang S; Nguyen LH; Zhou K; Tu HC; Sehgal A; Nassour I; Li L; Gopal P; Goodman J; Singal AG; Yopp A; Zhang Y; Siegwart DJ; Zhu H
    Gastroenterology; 2018 Apr; 154(5):1421-1434. PubMed ID: 29274368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis.
    Huang X; Yu C; Jin C; Yang C; Xie R; Cao D; Wang F; McKeehan WL
    Mol Carcinog; 2006 Dec; 45(12):934-42. PubMed ID: 16929488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling.
    Sun L; Beggs K; Borude P; Edwards G; Bhushan B; Walesky C; Roy N; Manley MW; Gunewardena S; O'Neil M; Li H; Apte U
    Am J Physiol Gastrointest Liver Physiol; 2016 Jul; 311(1):G91-G104. PubMed ID: 27151938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperpolyploidization of hepatocyte initiates preneoplastic lesion formation in the liver.
    Lin H; Huang YS; Fustin JM; Doi M; Chen H; Lai HH; Lin SH; Lee YL; King PC; Hou HS; Chen HW; Young PY; Chao HW
    Nat Commun; 2021 Jan; 12(1):645. PubMed ID: 33510150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of DEN-induced liver tumourigenesis in hepatocyte-specific Lass2-knockout mice coincident with upregulation of the TGF-β1-Smad4-PAI-1 axis.
    Chen L; Lu X; Zeng T; Chen Y; Chen Q; Wu W; Yan X; Cai H; Zhang Z; Shao Q; Qin W
    Oncol Rep; 2014 Feb; 31(2):885-93. PubMed ID: 24337404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BOK promotes chemical-induced hepatocarcinogenesis in mice.
    Rabachini T; Fernandez-Marrero Y; Montani M; Loforese G; Sladky V; He Z; Bachmann D; Wicki S; Villunger A; Stroka D; Kaufmann T
    Cell Death Differ; 2018 Mar; 25(4):708-720. PubMed ID: 29229991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress.
    Yang C; Lu W; Lin T; You P; Ye M; Huang Y; Jiang X; Wang C; Wang F; Lee MH; Yeung SC; Johnson RL; Wei C; Tsai RY; Frazier ML; McKeehan WL; Luo Y
    BMC Gastroenterol; 2013 Apr; 13():67. PubMed ID: 23590285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.