BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 3356416)

  • 1. Effect of side chain length on bile acid conjugation: glucuronidation, sulfation and coenzyme A formation of nor-bile acids and their natural C24 homologs by human and rat liver fractions.
    Kirkpatrick RB; Green MD; Hagey LR; Hofmann AF; Tephly TR
    Hepatology; 1988; 8(2):353-7. PubMed ID: 3356416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ursodeoxycholate on the bile flow in the rat.
    Kitani K; Kanai S
    Life Sci; 1982 Nov; 31(18):1973-85. PubMed ID: 7176806
    [No Abstract]   [Full Text] [Related]  

  • 3. Glucuronidation of monohydroxylated short chain bile acids by human liver microsomes and purified human liver UDP-glucuronosyltransferases.
    Irshaid YM; Radominska A; Zimniak P; Zimniak A; Lester R; Tephly TR
    Drug Metab Dispos; 1991; 19(1):173-7. PubMed ID: 1673394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucuronidation of bile acids by rat liver 3-OH androgen UDP-glucuronyltransferase.
    Kirkpatrick RB; Falany CN; Tephly TR
    J Biol Chem; 1984 May; 259(10):6176-80. PubMed ID: 6427209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synthesis of bile acid glucuronides by agarose-bound UDP-glucuronyltransferase.
    Czygan P; Stiehl A; Senn M
    Biochim Biophys Acta; 1980 Aug; 619(2):228-34. PubMed ID: 6773582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ursodeoxycholic acid, 7-ketolithocholic acid, and chenodeoxycholic acid are primary bile acids of the nutria (Myocastor coypus).
    Tint GS; Bullock J; Batta AK; Shefer S; Salen G
    Gastroenterology; 1986 Mar; 90(3):702-9. PubMed ID: 3943698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfation of bile salts: a new metabolic pathway.
    Stiehl A
    Digestion; 1974; 11(5-6):406-13. PubMed ID: 4618540
    [No Abstract]   [Full Text] [Related]  

  • 8. Ursodeoxycholic acid, chenodeoxycholic acid, and 7-ketolithocholic acid are primary bile acids of the guinea pig.
    Tint GS; Xu GR; Batta AK; Shefer S; Niemann W; Salen G
    J Lipid Res; 1990 Jul; 31(7):1301-6. PubMed ID: 2401860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative formation of lithocholic acid from chenodeoxycholic and ursodeoxycholic acids in the colon.
    Bazzoli F; Fromm H; Sarva RP; Sembrat RF; Ceryak S
    Gastroenterology; 1982 Oct; 83(4):753-60. PubMed ID: 7106506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids.
    Batta AK; Salen G; Arora R; Shefer S; Batta M; Person A
    J Biol Chem; 1990 Jul; 265(19):10925-8. PubMed ID: 2358447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Formation of bile acid sulfate esters in perfused rat livers following bile duct occlusion].
    Liersch M; Stiehl A
    Z Gastroenterol; 1974 Mar; 12(2):131-4. PubMed ID: 4825092
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of dietary bile acids on formation of bile acids in rat.
    Danielsson H
    Steroids; 1973 Nov; 22(5):667-76. PubMed ID: 4761807
    [No Abstract]   [Full Text] [Related]  

  • 13. Glucuronides of monohydroxylated bile acids: specificity of microsomal glucuronyltransferase for the glucuronidation site, C-3 configuration, and side chain length.
    RadomiƄska-Pyrek A; Zimniak P; Chari M; Golunski E; Lester R; St Pyrek J
    J Lipid Res; 1986 Jan; 27(1):89-101. PubMed ID: 3083033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of complete sulfation of bile acids on bile formation: role of conjugation and number of sulfate groups.
    Yousef I; Mignault D; Tuchweber B
    Hepatology; 1992 Mar; 15(3):438-45. PubMed ID: 1544624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of side-chain shortening on the physiologic properties of bile acids: hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents.
    Yoon YB; Hagey LR; Hofmann AF; Gurantz D; Michelotti EL; Steinbach JH
    Gastroenterology; 1986 Apr; 90(4):837-52. PubMed ID: 3949115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of hydroxyl-linked glucuronides of short-chain bile acids by rat liver 3-hydroxysteroid UDP-glucuronosyltransferase.
    Radominska A; Green MD; Zimniak P; Lester R; Tephly TR
    J Lipid Res; 1988 Apr; 29(4):501-8. PubMed ID: 3134505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of bile acid synthesis. I. Effects of conjugated ursodeoxycholate and cholate on bile acid synthesis in chronic bile fistula rat.
    Heuman DM; Hernandez CR; Hylemon PB; Kubaska WM; Hartman C; Vlahcevic ZR
    Hepatology; 1988; 8(2):358-65. PubMed ID: 3356417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin-layer chromatographic separation of conjugates of ursodeoxycholic acid from those of litho-, chenodeoxy-, deoxy-, and cholic acids.
    Batta AK; Shefer S; Salen G
    J Lipid Res; 1981 May; 22(4):712-4. PubMed ID: 7276746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypercholeresis induced by ursodeoxycholic acid and 7-ketolithocholic acid in the rat: possible role of bicarbonate transport.
    Dumont M; Erlinger S; Uchman S
    Gastroenterology; 1980 Jul; 79(1):82-9. PubMed ID: 7380227
    [No Abstract]   [Full Text] [Related]  

  • 20. Bile acid conjugation in the chimpanzee: effective sulfation of lithocholic acid.
    Schwenk M; Hofmann AF; Carlson GL; Carter JA; Coulston F; Greim H
    Arch Toxicol; 1978 Apr; 40(2):109-18. PubMed ID: 580732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.