These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33564692)

  • 1. A streamlined CRISPR/Cas9 approach for fast genome editing in
    Winiger RR; Hehl AB
    J Biol Methods; 2020; 7(4):e140. PubMed ID: 33564692
    [No Abstract]   [Full Text] [Related]  

  • 2. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9.
    Shen B; Brown KM; Lee TD; Sibley LD
    mBio; 2014 May; 5(3):e01114-14. PubMed ID: 24825012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved method for introducing site-directed point mutation into the Toxoplasma gondii genome using CRISPR/Cas9.
    Sugi T; Kato K; Weiss LM
    Parasitol Int; 2016 Oct; 65(5 Pt B):558-562. PubMed ID: 27167504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-Mediated Generation of Tetracycline Repressor-Based Inducible Knockdown in Toxoplasma gondii.
    Jacot D; Soldati-Favre D
    Methods Mol Biol; 2020; 2071():125-141. PubMed ID: 31758450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular Parasites
    Kadesch P; Hollubarsch T; Gerbig S; Schneider L; Silva LMR; Hermosilla C; Taubert A; Spengler B
    J Am Soc Mass Spectrom; 2020 Sep; 31(9):1815-1824. PubMed ID: 32830963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Besnoitia besnoiti-driven endothelial host cell cycle alteration.
    Velásquez ZD; Lopez-Osorio S; Pervizaj-Oruqaj L; Herold S; Hermosilla C; Taubert A
    Parasitol Res; 2020 Aug; 119(8):2563-2577. PubMed ID: 32548739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serological survey of Toxoplasma gondii and Besnoitia besnoiti in a wildlife conservation area in southern Portugal.
    Waap H; Nunes T; Vaz Y; Leitão A
    Vet Parasitol Reg Stud Reports; 2016 Jun; 3-4():7-12. PubMed ID: 31014504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Besnoitia besnoiti and Toxoplasma gondii: two apicomplexan strategies to manipulate the host cell centrosome and Golgi apparatus.
    Cardoso R; Nolasco S; Gonçalves J; Cortes HC; Leitão A; Soares H
    Parasitology; 2014 Sep; 141(11):1436-54. PubMed ID: 24892307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of cis- and trans- Golgi and the Rab9A-GTPase during infection by Besnoitia besnoiti, Toxoplasma gondii and Neospora caninum.
    Cardoso R; Wang J; Müller J; Rupp S; Leitão A; Hemphill A
    Exp Parasitol; 2018 Apr; 187():75-85. PubMed ID: 29499180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-specific differences in Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti seroprevalence in Namibian wildlife.
    Seltmann A; Schares G; Aschenborn OHK; Heinrich SK; Thalwitzer S; Wachter B; Czirják GÁ
    Parasit Vectors; 2020 Jan; 13(1):7. PubMed ID: 31915056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 13. Importance of serological cross-reactivity among Toxoplasma gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and Besnoitia besnoiti.
    Gondim LFP; Mineo JR; Schares G
    Parasitology; 2017 Jun; 144(7):851-868. PubMed ID: 28241894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New and emerging uses of CRISPR/Cas9 to genetically manipulate apicomplexan parasites.
    Di Cristina M; Carruthers VB
    Parasitology; 2018 Aug; 145(9):1119-1126. PubMed ID: 29463318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-Glycoprotein Inhibitors Differently Affect
    Larrazabal C; Silva LMR; Pervizaj-Oruqaj L; Herold S; Hermosilla C; Taubert A
    Pathogens; 2021 Mar; 10(4):. PubMed ID: 33806177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seroprevalence and Clinical Outcomes of
    Ciuca L; Borriello G; Bosco A; D'Andrea L; Cringoli G; Ciaramella P; Maurelli MP; Di Loria A; Rinaldi L; Guccione J
    Animals (Basel); 2020 Mar; 10(3):. PubMed ID: 32235734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.