These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33564914)

  • 1. Tuning of a Membrane-Perforating Antimicrobial Peptide to Selectively Target Membranes of Different Lipid Composition.
    Chen CH; Starr CG; Guha S; Wimley WC; Ulmschneider MB; Ulmschneider JP
    J Membr Biol; 2021 Feb; 254(1):75-96. PubMed ID: 33564914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes.
    Rausch JM; Marks JR; Rathinakumar R; Wimley WC
    Biochemistry; 2007 Oct; 46(43):12124-39. PubMed ID: 17918962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward the de novo design of antimicrobial peptides: Lack of correlation between peptide permeabilization of lipid vesicles and antimicrobial, cytolytic, or cytotoxic activity in living cells.
    He J; Krauson AJ; Wimley WC
    Biopolymers; 2014 Jan; 102(1):1-6. PubMed ID: 23893525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
    Ulmschneider JP
    Biophys J; 2017 Jul; 113(1):73-81. PubMed ID: 28700927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicle protrusion induced by antimicrobial peptides suggests common carpet mechanism for short antimicrobial peptides.
    Park P; Matsubara DK; Barzotto DR; Lima FS; Chaimovich H; Marrink SJ; Cuccovia IM
    Sci Rep; 2024 Apr; 14(1):9701. PubMed ID: 38678109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity.
    Kim SY; Bondar AN; Wimley WC; Hristova K
    Biophys J; 2021 Feb; 120(4):618-630. PubMed ID: 33460594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic molecular evolution of pore-forming peptides by iterative combinatorial library screening.
    Krauson AJ; He J; Wimley AW; Hoffmann AR; Wimley WC
    ACS Chem Biol; 2013 Apr; 8(4):823-31. PubMed ID: 23394375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomistic simulations of pore formation and closure in lipid bilayers.
    Bennett WF; Sapay N; Tieleman DP
    Biophys J; 2014 Jan; 106(1):210-9. PubMed ID: 24411253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide.
    Chen CH; Starr CG; Troendle E; Wiedman G; Wimley WC; Ulmschneider JP; Ulmschneider MB
    J Am Chem Soc; 2019 Mar; 141(12):4839-4848. PubMed ID: 30839209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Insights into Pore Formation Mechanism, Membrane Perturbation, and Water Permeation by the Antimicrobial Peptide Pleurocidin: A Combined All-Atom and Coarse-Grained Molecular Dynamics Simulation Study.
    Talandashti R; Mehrnejad F; Rostamipour K; Doustdar F; Lavasanifar A
    J Phys Chem B; 2021 Jul; 125(26):7163-7176. PubMed ID: 34171196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and Computational Characterization of Oxidized and Reduced Protegrin Pores in Lipid Bilayers.
    Rodnin MV; Vasquez-Montes V; Nepal B; Ladokhin AS; Lazaridis T
    J Membr Biol; 2020 Jun; 253(3):287-298. PubMed ID: 32500172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides.
    Kabelka I; Vácha R
    Acc Chem Res; 2021 May; 54(9):2196-2204. PubMed ID: 33844916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
    Paterson DJ; Tassieri M; Reboud J; Wilson R; Cooper JM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8324-E8332. PubMed ID: 28931578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational Fine-Tuning of Pore-Forming Peptide Potency and Selectivity.
    Krauson AJ; Hall OM; Fuselier T; Starr CG; Kauffman WB; Wimley WC
    J Am Chem Soc; 2015 Dec; 137(51):16144-52. PubMed ID: 26632653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of Aβ25-35 β-barrel-like oligomers with anionic lipid bilayer and resulting membrane leakage: an all-atom molecular dynamics study.
    Chang Z; Luo Y; Zhang Y; Wei G
    J Phys Chem B; 2011 Feb; 115(5):1165-74. PubMed ID: 21192698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
    Wimley WC; Selsted ME; White SH
    Protein Sci; 1994 Sep; 3(9):1362-73. PubMed ID: 7833799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.