These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33565087)
1. Histological Characteristics of Skin Treated With a Fractionated 1064-nm Nd: YAG Picosecond Laser With Holographic Optics. Zhang M; Guan Y; Huang Y; Zhang E; Lin T; Wu Q Lasers Surg Med; 2021 Oct; 53(8):1073-1079. PubMed ID: 33565087 [TBL] [Abstract][Full Text] [Related]
2. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic. Tanghetti Md E; Jennings J Lasers Surg Med; 2018 Jan; 50(1):37-44. PubMed ID: 29111604 [TBL] [Abstract][Full Text] [Related]
3. Accelerated tattoo removal with acoustic shock wave therapy in conjunction with a picosecond laser. Vangipuram R; Hamill SS; Friedman PM Lasers Surg Med; 2018 Sep; 50(9):890-892. PubMed ID: 29938802 [TBL] [Abstract][Full Text] [Related]
4. Characterization of picosecond laser-induced optical breakdown using harmonic generation microscopy. Liu C; Wu PJ; Chia SH; Sun CK; Liao YH Lasers Surg Med; 2023 Aug; 55(6):561-567. PubMed ID: 37051896 [TBL] [Abstract][Full Text] [Related]
5. Pattern analysis of 532- and 1064-nm microlens array-type, picosecond-domain laser-induced tissue reactions in ex vivo human skin. Chung HJ; Lee HC; Park J; Childs J; Hong J; Kim H; Cho SB Lasers Med Sci; 2019 Aug; 34(6):1207-1215. PubMed ID: 30604347 [TBL] [Abstract][Full Text] [Related]
6. Histology of ex vivo skin after treatment with fractionated picosecond Nd:YAG laser in high and low-energy settings. Yeh YT; Peng JH; Peng P J Cosmet Laser Ther; 2020; 22(1):43-47. PubMed ID: 31900067 [No Abstract] [Full Text] [Related]
7. Wound Healing Profile After 1064- and 532-nm Picosecond Lasers With Microlens Array of In Vivo Human Skin. O Connor K; Cho SB; Chung HJ Lasers Surg Med; 2021 Oct; 53(8):1059-1064. PubMed ID: 33644902 [TBL] [Abstract][Full Text] [Related]
8. Microlesion healing dynamics in in vivo porcine skin after treatment with 1064 nm picosecond-domain Nd:YAG laser. Baleisis J; Rudys R J Biophotonics; 2023 Apr; 16(4):e202200349. PubMed ID: 36606608 [TBL] [Abstract][Full Text] [Related]
9. Melanin-dependent tissue interactions induced by a 755-nm picosecond-domain laser: complementary visualization by optical imaging and histology. Jacobsen K; Ortner VK; Fredman GL; Christensen RL; Dierickx C; Tanghetti E; Paasch U; Haedersdal M Lasers Med Sci; 2023 Jul; 38(1):160. PubMed ID: 37450199 [TBL] [Abstract][Full Text] [Related]
10. Comparison of 1064-nm and Dual-Wavelength (532/1064-nm) Picosecond-Domain Nd:YAG Lasers in the Treatment of Facial Photoaging: A Randomized Controlled Split-Face Study. Zhang M; Huang Y; Wu Q; Lin T; Gong X; Chen H; Wang Y Lasers Surg Med; 2021 Nov; 53(9):1158-1165. PubMed ID: 33783878 [TBL] [Abstract][Full Text] [Related]
11. In Vivo Evaluation of Laser-Induced Optical Breakdown (LIOBS) by 1064-nm Nd:YAG Fractional Picosecond Laser With Reflectance Confocal Microscopy and Precise Histopathologic Correlation. Rojas-Orrego M; Carreño N; Feuerhake T; Navarrete-Dechent C Lasers Surg Med; 2024 Sep; 56(7):650-656. PubMed ID: 39072796 [TBL] [Abstract][Full Text] [Related]
12. Optical Effects of Focused Fractional Nanosecond 1064-nm Nd:YAG Laser: Techniques of Application on Human Skin. Liu C; Huang HY; Chang YY; Sun CK; Chia SH; Liao YH Lasers Surg Med; 2024 Aug; 56(6):557-563. PubMed ID: 38890780 [TBL] [Abstract][Full Text] [Related]
13. Correlation of histological findings of single session Er:YAG skin fractional resurfacing with various passes and energies and the possible clinical implications. Trelles MA; Vélez M; Mordon S Lasers Surg Med; 2008 Mar; 40(3):171-7. PubMed ID: 18366083 [TBL] [Abstract][Full Text] [Related]
14. Interactive tissue reactions of 1064-nm focused picosecond-domain laser and dermal cohesive polydensified matrix hyaluronic acid treatment in in vivo rat skin. Kim HK; Kim HJ; Hong JY; Park J; Lee HC; Lyu H; Cho SB Skin Res Technol; 2020 Sep; 26(5):683-689. PubMed ID: 32180275 [TBL] [Abstract][Full Text] [Related]
15. Comparison of epidermal/dermal damage between the long-pulsed 1064 nm Nd:YAG and 755 nm alexandrite lasers under relatively high fluence conditions: quantitative and histological assessments. Lee JH; Park SR; Jo JH; Park SY; Seo YK; Kim SM Photomed Laser Surg; 2014 Jul; 32(7):386-93. PubMed ID: 24992273 [TBL] [Abstract][Full Text] [Related]
16. Delivery of light to the skin through ablated conduits. Tanghetti E; Mirkov M; Sierra RA Lasers Surg Med; 2017 Jan; 49(1):69-77. PubMed ID: 27197620 [TBL] [Abstract][Full Text] [Related]
17. Histological comparison of 1064 nm Nd:YAG and 1320 nm Nd:YAG laser lipolysis using an ex vivo model. Reszko AE; Magro CM; Diktaban T; Sadick NS J Drugs Dermatol; 2009 Apr; 8(4):377-82. PubMed ID: 19363856 [TBL] [Abstract][Full Text] [Related]
18. A Randomized, Split-Face, Double-Blind Comparison Trial Between Fractionated Frequency-Doubled 1064/532 nm Picosecond Nd:YAG Laser and Fractionated 1927 nm Thulium Fiber Laser for Facial Photorejuvenation. Wu DC; Jones IT; Boen M; Al-Haddad M; Goldman MP Lasers Surg Med; 2021 Feb; 53(2):204-211. PubMed ID: 32285983 [TBL] [Abstract][Full Text] [Related]
20. Prospective studies of the efficacy and safety of the picosecond 755, 1,064, and 532 nm lasers for the treatment of infraorbital dark circles. Vanaman Wilson MJ; Jones IT; Bolton J; Larsen L; Wu DC; Goldman MP Lasers Surg Med; 2018 Jan; 50(1):45-50. PubMed ID: 29135036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]