These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33565124)

  • 1. Deep learning detects genetic alterations in cancer histology generated by adversarial networks.
    Krause J; Grabsch HI; Kloor M; Jendrusch M; Echle A; Buelow RD; Boor P; Luedde T; Brinker TJ; Trautwein C; Pearson AT; Quirke P; Jenniskens J; Offermans K; van den Brandt PA; Kather JN
    J Pathol; 2021 May; 254(1):70-79. PubMed ID: 33565124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SynthEye: Investigating the Impact of Synthetic Data on Artificial Intelligence-assisted Gene Diagnosis of Inherited Retinal Disease.
    Veturi YA; Woof W; Lazebnik T; Moghul I; Woodward-Court P; Wagner SK; Cabral de Guimarães TA; Daich Varela M; Liefers B; Patel PJ; Beck S; Webster AR; Mahroo O; Keane PA; Michaelides M; Balaskas K; Pontikos N
    Ophthalmol Sci; 2023 Jun; 3(2):100258. PubMed ID: 36685715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. xDEEP-MSI: Explainable Bias-Rejecting Microsatellite Instability Deep Learning System in Colorectal Cancer.
    Bustos A; Payá A; Torrubia A; Jover R; Llor X; Bessa X; Castells A; Carracedo Á; Alenda C
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study.
    Muti HS; Heij LR; Keller G; Kohlruss M; Langer R; Dislich B; Cheong JH; Kim YW; Kim H; Kook MC; Cunningham D; Allum WH; Langley RE; Nankivell MG; Quirke P; Hayden JD; West NP; Irvine AJ; Yoshikawa T; Oshima T; Huss R; Grosser B; Roviello F; d'Ignazio A; Quaas A; Alakus H; Tan X; Pearson AT; Luedde T; Ebert MP; Jäger D; Trautwein C; Gaisa NT; Grabsch HI; Kather JN
    Lancet Digit Health; 2021 Oct; 3(10):e654-e664. PubMed ID: 34417147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.
    Wagner SJ; Reisenbüchler D; West NP; Niehues JM; Zhu J; Foersch S; Veldhuizen GP; Quirke P; Grabsch HI; van den Brandt PA; Hutchins GGA; Richman SD; Yuan T; Langer R; Jenniskens JCA; Offermans K; Mueller W; Gray R; Gruber SB; Greenson JK; Rennert G; Bonner JD; Schmolze D; Jonnagaddala J; Hawkins NJ; Ward RL; Morton D; Seymour M; Magill L; Nowak M; Hay J; Koelzer VH; Church DN; ; Matek C; Geppert C; Peng C; Zhi C; Ouyang X; James JA; Loughrey MB; Salto-Tellez M; Brenner H; Hoffmeister M; Truhn D; Schnabel JA; Boxberg M; Peng T; Kather JN
    Cancer Cell; 2023 Sep; 41(9):1650-1661.e4. PubMed ID: 37652006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional generative adversarial network driven radiomic prediction of mutation status based on magnetic resonance imaging of breast cancer.
    Huang ZH; Chen L; Sun Y; Liu Q; Hu P
    J Transl Med; 2024 Mar; 22(1):226. PubMed ID: 38429796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning generates synthetic cancer histology for explainability and education.
    Dolezal JM; Wolk R; Hieromnimon HM; Howard FM; Srisuwananukorn A; Karpeyev D; Ramesh S; Kochanny S; Kwon JW; Agni M; Simon RC; Desai C; Kherallah R; Nguyen TD; Schulte JJ; Cole K; Khramtsova G; Garassino MC; Husain AN; Li H; Grossman R; Cipriani NA; Pearson AT
    NPJ Precis Oncol; 2023 May; 7(1):49. PubMed ID: 37248379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease.
    Diller GP; Vahle J; Radke R; Vidal MLB; Fischer AJ; Bauer UMM; Sarikouch S; Berger F; Beerbaum P; Baumgartner H; Orwat S;
    BMC Med Imaging; 2020 Oct; 20(1):113. PubMed ID: 33032536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Social network analysis of cell networks improves deep learning for prediction of molecular pathways and key mutations in colorectal cancer.
    Zamanitajeddin N; Jahanifar M; Bilal M; Eastwood M; Rajpoot N
    Med Image Anal; 2024 Apr; 93():103071. PubMed ID: 38199068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using histopathology latent diffusion models as privacy-preserving dataset augmenters improves downstream classification performance.
    Niehues JM; Müller-Franzes G; Schirris Y; Wagner SJ; Jendrusch M; Kloor M; Pearson AT; Muti HS; Hewitt KJ; Veldhuizen GP; Zigutyte L; Truhn D; Kather JN
    Comput Biol Med; 2024 Jun; 175():108410. PubMed ID: 38678938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning.
    Jang HJ; Lee A; Kang J; Song IH; Lee SH
    World J Gastroenterol; 2020 Oct; 26(40):6207-6223. PubMed ID: 33177794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of a Melanoma and Nevus Data Set From Unstandardized Clinical Photographs on the Internet.
    Cho SI; Navarrete-Dechent C; Daneshjou R; Cho HS; Chang SE; Kim SH; Na JI; Han SS
    JAMA Dermatol; 2023 Nov; 159(11):1223-1231. PubMed ID: 37792351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-pair patch generative adversarial network for data augmentation of focal pathology object detection models.
    Tu E; Burkow J; Tsai A; Junewick J; Perez FA; Otjen J; Alessio AM
    J Med Imaging (Bellingham); 2024 May; 11(3):034505. PubMed ID: 38840982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen fiber centerline tracking in fibrotic tissue via deep neural networks with variational autoencoder-based synthetic training data generation.
    Park H; Li B; Liu Y; Nelson MS; Wilson HM; Sifakis E; Eliceiri KW
    Med Image Anal; 2023 Dec; 90():102961. PubMed ID: 37802011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetically enhanced: unveiling synthetic data's potential in medical imaging research.
    Khosravi B; Li F; Dapamede T; Rouzrokh P; Gamble CU; Trivedi HM; Wyles CC; Sellergren AB; Purkayastha S; Erickson BJ; Gichoya JW
    EBioMedicine; 2024 Jun; 104():105174. PubMed ID: 38821021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning approach to private data sharing of medical images using conditional generative adversarial networks (GANs).
    Sun H; Plawinski J; Subramaniam S; Jamaludin A; Kadir T; Readie A; Ligozio G; Ohlssen D; Baillie M; Coroller T
    PLoS One; 2023; 18(7):e0280316. PubMed ID: 37410795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4).
    Truhn D; Loeffler CM; Müller-Franzes G; Nebelung S; Hewitt KJ; Brandner S; Bressem KK; Foersch S; Kather JN
    J Pathol; 2024 Mar; 262(3):310-319. PubMed ID: 38098169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of GAN artifacts for simulating mammograms on identifying mammographically occult cancer.
    Lee J; Mustafaev T; Nishikawa RM
    J Med Imaging (Bellingham); 2023 Sep; 10(5):054503. PubMed ID: 37840849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SynCLay: Interactive synthesis of histology images from bespoke cellular layouts.
    Deshpande S; Dawood M; Minhas F; Rajpoot N
    Med Image Anal; 2024 Jan; 91():102995. PubMed ID: 37898050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced dataset synthesis using conditional generative adversarial networks.
    Mert A
    Biomed Eng Lett; 2023 Feb; 13(1):41-48. PubMed ID: 36711160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.