These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33565203)

  • 1. Integrating Computational and Experimental Workflows for Accelerated Organic Materials Discovery.
    Greenaway RL; Jelfs KE
    Adv Mater; 2021 Mar; 33(11):e2004831. PubMed ID: 33565203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling to assist in the discovery of supramolecular materials.
    Jelfs KE
    Ann N Y Acad Sci; 2022 Dec; 1518(1):106-119. PubMed ID: 36251351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress and prospects for accelerating materials science with automated and autonomous workflows.
    Stein HS; Gregoire JM
    Chem Sci; 2019 Nov; 10(42):9640-9649. PubMed ID: 32153744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward autonomous design and synthesis of novel inorganic materials.
    Szymanski NJ; Zeng Y; Huo H; Bartel CJ; Kim H; Ceder G
    Mater Horiz; 2021 Aug; 8(8):2169-2198. PubMed ID: 34846423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can we predict materials that can be synthesised?
    Szczypiński FT; Bennett S; Jelfs KE
    Chem Sci; 2020 Dec; 12(3):830-840. PubMed ID: 34163850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Approaches for the Discovery of Supramolecular Organic Cages.
    Greenaway RL; Jelfs KE
    Chempluschem; 2020 Aug; 85(8):1813-1823. PubMed ID: 32833311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput development of amphiphile self-assembly materials: fast-tracking synthesis, characterization, formulation, application, and understanding.
    Mulet X; Conn CE; Fong C; Kennedy DF; Moghaddam MJ; Drummond CJ
    Acc Chem Res; 2013 Jul; 46(7):1497-505. PubMed ID: 23427836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unlocking the computational design of metal-organic cages.
    Tarzia A; Jelfs KE
    Chem Commun (Camb); 2022 Mar; 58(23):3717-3730. PubMed ID: 35229861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Industrial Coatings Research at The Dow Chemical Company.
    Kuo TC; Malvadkar NA; Drumright R; Cesaretti R; Bishop MT
    ACS Comb Sci; 2016 Sep; 18(9):507-26. PubMed ID: 27440008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary chemical space exploration for functional materials: computational organic semiconductor discovery.
    Cheng CY; Campbell JE; Day GM
    Chem Sci; 2020 Apr; 11(19):4922-4933. PubMed ID: 34122948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials Precursor Score: Modeling Chemists' Intuition for the Synthetic Accessibility of Porous Organic Cage Precursors.
    Bennett S; Szczypiński FT; Turcani L; Briggs ME; Greenaway RL; Jelfs KE
    J Chem Inf Model; 2021 Sep; 61(9):4342-4356. PubMed ID: 34388347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Design-to-Device Pipeline for Data-Driven Materials Discovery.
    Cole JM
    Acc Chem Res; 2020 Mar; 53(3):599-610. PubMed ID: 32096410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory.
    Wu Y; Wang CF; Ju MG; Jia Q; Zhou Q; Lu S; Gao X; Zhang Y; Wang J
    Nat Commun; 2024 Jan; 15(1):138. PubMed ID: 38167836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing in the Face of Uncertainty: Exploiting Electronic Structure and Machine Learning Models for Discovery in Inorganic Chemistry.
    Janet JP; Liu F; Nandy A; Duan C; Yang T; Lin S; Kulik HJ
    Inorg Chem; 2019 Aug; 58(16):10592-10606. PubMed ID: 30834738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Materials Acceleration Platform for Organic Laser Discovery.
    Wu TC; Aguilar-Granda A; Hotta K; Yazdani SA; Pollice R; Vestfrid J; Hao H; Lavigne C; Seifrid M; Angello N; Bencheikh F; Hein JE; Burke M; Adachi C; Aspuru-Guzik A
    Adv Mater; 2023 Feb; 35(6):e2207070. PubMed ID: 36373553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building a Toolbox for the Analysis and Prediction of Ligand and Catalyst Effects in Organometallic Catalysis.
    Durand DJ; Fey N
    Acc Chem Res; 2021 Feb; 54(4):837-848. PubMed ID: 33533587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress toward Solid State Synthesis by Design.
    Chamorro JR; McQueen TM
    Acc Chem Res; 2018 Nov; 51(11):2918-2925. PubMed ID: 30299082
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.