BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33565368)

  • 1. Photocatalytic disinfection of
    Nguyen NH; Tran Tien K; Hung TN; Vo Nguyen Xuan Q; Ho Thi T; Le Thi P; Nguyen Thi T
    Environ Technol; 2022 Jun; 43(16):2553-2567. PubMed ID: 33565368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of toluene from water by photocatalytic oxidation with activated carbon supported Fe(3+)-doped TiO2 nanotubes.
    Yuan R; Zhou B; Ma L
    Water Sci Technol; 2014; 70(4):642-8. PubMed ID: 25116493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reusability in visible light of titanate nanotubes for the removal of organic pollutants: role of calcination temperature.
    Ruiz-Castillo AL; Hinojosa-Reyes M; Camposeco-Solis R; Ruiz F
    Environ Technol; 2022 Jun; 43(14):2081-2098. PubMed ID: 33332243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Simultaneous Removal of Cd (II) and Phenol by Titanium Dioxide-Titanate Nanotubes Composite Nanomaterial Synthesized Through Alkaline-Acid Hydrothermal Method].
    Lei L; Jin YJ; Wang T; Zhao X; Yan Y; Liu W
    Huan Jing Ke Xue; 2015 Jul; 36(7):2573-80. PubMed ID: 26489327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method.
    Nguyen NH; Bai H
    J Environ Sci (China); 2014 May; 26(5):1180-7. PubMed ID: 25079649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Cr(VI) reduction and Cr(III) removal of bifunctional MOF/Titanate nanotube composites.
    Wang X; Liu W; Fu H; Yi XH; Wang P; Zhao C; Wang CC; Zheng W
    Environ Pollut; 2019 Jun; 249():502-511. PubMed ID: 30928522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-doped carbon-supported/modified titanate nanotubes for perfluorooctane sulfonate degradation in water: Effects of preparation conditions, mechanisms, and parameter optimization.
    Zhu Y; Xu T; Zhao D
    Sci Total Environ; 2022 Dec; 853():158573. PubMed ID: 36075423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of N-modified titania nanotubes for photocatalytic applications.
    Monteiro RA; Lopes FV; Boaventura RA; Silva AM; Vilar VJ
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):810-9. PubMed ID: 24798920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and desorption of Cd(II) onto titanate nanotubes and efficient regeneration of tubular structures.
    Wang T; Liu W; Xu N; Ni J
    J Hazard Mater; 2013 Apr; 250-251():379-86. PubMed ID: 23500417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes.
    Ou HH; Liao CH; Liou YH; Hong JH; Lo SL
    Environ Sci Technol; 2008 Jun; 42(12):4507-12. PubMed ID: 18605578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TiO2-based nanotubes modified with nickel: synthesis, properties, and improved photocatalytic activity.
    Qamar M; Kim SJ; Ganguli AK
    Nanotechnology; 2009 Nov; 20(45):455703. PubMed ID: 19834243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification.
    Yuan R; Zhou B; Hua D; Shi C
    J Hazard Mater; 2013 Nov; 262():527-38. PubMed ID: 24095992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air.
    Yu H; Yu J; Cheng B
    Chemosphere; 2007 Feb; 66(11):2050-7. PubMed ID: 17109930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic degradation of humic acids using substrate-supported Fe³⁺-doped TiO₂ nanotubes under UV/O₃ for water purification.
    Yuan R; Zhou B; Zhang X; Guan H
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17955-64. PubMed ID: 26165990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of metal-ion doping on the characteristics and photocatalytic activity of TiO2 nanotubes for the removal of toluene from water.
    Yuan R; Zhou B; Hua D; Shi C; Ma L
    Water Sci Technol; 2014; 69(8):1697-704. PubMed ID: 24759531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of titanate nanotubes for dyes adsorptive removal from aqueous solution.
    Lee CK; Liu SS; Juang LC; Wang CC; Lyu MD; Hung SH
    J Hazard Mater; 2007 Sep; 148(3):756-60. PubMed ID: 17689860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption of Cr(VI) onto amino-modified titanate nanotubes using 2-bromoethylamine hydrobromide through SN2 reaction.
    Niu G; Liu W; Wang T; Ni J
    J Colloid Interface Sci; 2013 Jul; 401():133-40. PubMed ID: 23623413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3.
    Wu H; Ma J; Zhang C; He H
    J Environ Sci (China); 2014 Mar; 26(3):673-82. PubMed ID: 25079281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid.
    Chen YC; Lo SL; Kuo J
    Water Res; 2011 Aug; 45(14):4131-40. PubMed ID: 21703658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation.
    Zhao X; Du P; Cai Z; Wang T; Fu J; Liu W
    Environ Pollut; 2018 Jan; 232():580-590. PubMed ID: 28988872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.