These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 33565530)

  • 1. Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs.
    Budharaju H; Subramanian A; Sethuraman S
    Biomater Sci; 2021 Mar; 9(6):1974-1994. PubMed ID: 33565530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofabrication & cryopreservation of tissue engineered constructs for on-demand applications.
    Budharaju H; Sundaramurthi D; Sethuraman S
    Biofabrication; 2024 Sep; 16(4):. PubMed ID: 39258414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration.
    Khanna A; Ayan B; Undieh AA; Yang YP; Huang NF
    J Mol Cell Cardiol; 2022 Aug; 169():13-27. PubMed ID: 35569213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinted functional and contractile cardiac tissue constructs.
    Wang Z; Lee SJ; Cheng HJ; Yoo JJ; Atala A
    Acta Biomater; 2018 Apr; 70():48-56. PubMed ID: 29452273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting.
    Abaci A; Guvendiren M
    Adv Healthc Mater; 2020 Dec; 9(24):e2000734. PubMed ID: 32691980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting in cardiac tissue engineering.
    Wang Z; Wang L; Li T; Liu S; Guo B; Huang W; Wu Y
    Theranostics; 2021; 11(16):7948-7969. PubMed ID: 34335973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering.
    Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME
    Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting Technologies in Tissue Engineering.
    Yilmaz B; Tahmasebifar A; Baran ET
    Adv Biochem Eng Biotechnol; 2020; 171():279-319. PubMed ID: 31468094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation.
    Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues.
    de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA
    Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting.
    Mora-Boza A; Lopez-Donaire ML
    Adv Exp Med Biol; 2018; 1058():221-245. PubMed ID: 29691824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques.
    Askari M; Afzali Naniz M; Kouhi M; Saberi A; Zolfagharian A; Bodaghi M
    Biomater Sci; 2021 Feb; 9(3):535-573. PubMed ID: 33185203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in 3D bioprinting technology for tissue/organ regenerative engineering.
    Matai I; Kaur G; Seyedsalehi A; McClinton A; Laurencin CT
    Biomaterials; 2020 Jan; 226():119536. PubMed ID: 31648135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions.
    Zheng Z; Tang W; Li Y; Ai Y; Tu Z; Yang J; Fan C
    Heart Fail Rev; 2024 May; 29(3):599-613. PubMed ID: 37943420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.