These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. 3D bioprinted functional and contractile cardiac tissue constructs. Wang Z; Lee SJ; Cheng HJ; Yoo JJ; Atala A Acta Biomater; 2018 Apr; 70():48-56. PubMed ID: 29452273 [TBL] [Abstract][Full Text] [Related]
7. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting. Abaci A; Guvendiren M Adv Healthc Mater; 2020 Dec; 9(24):e2000734. PubMed ID: 32691980 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting in cardiac tissue engineering. Wang Z; Wang L; Li T; Liu S; Guo B; Huang W; Wu Y Theranostics; 2021; 11(16):7948-7969. PubMed ID: 34335973 [TBL] [Abstract][Full Text] [Related]
9. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528 [TBL] [Abstract][Full Text] [Related]
10. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
11. Bioprinting Technologies in Tissue Engineering. Yilmaz B; Tahmasebifar A; Baran ET Adv Biochem Eng Biotechnol; 2020; 171():279-319. PubMed ID: 31468094 [TBL] [Abstract][Full Text] [Related]
12. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520 [TBL] [Abstract][Full Text] [Related]
13. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Zhang J; Wehrle E; Rubert M; Müller R Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417 [TBL] [Abstract][Full Text] [Related]
14. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823 [TBL] [Abstract][Full Text] [Related]
15. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. Mora-Boza A; Lopez-Donaire ML Adv Exp Med Biol; 2018; 1058():221-245. PubMed ID: 29691824 [TBL] [Abstract][Full Text] [Related]
16. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
17. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Askari M; Afzali Naniz M; Kouhi M; Saberi A; Zolfagharian A; Bodaghi M Biomater Sci; 2021 Feb; 9(3):535-573. PubMed ID: 33185203 [TBL] [Abstract][Full Text] [Related]
20. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Zheng Z; Tang W; Li Y; Ai Y; Tu Z; Yang J; Fan C Heart Fail Rev; 2024 May; 29(3):599-613. PubMed ID: 37943420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]