BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33565673)

  • 1. Local connections and the larval competency strongly influence marine metapopulation persistence.
    Cecino G; Treml EA
    Ecol Appl; 2021 Jun; 31(4):e02302. PubMed ID: 33565673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating larval connectivity with local demography reveals regional dynamics of a marine metapopulation.
    Johnson DW; Christie MR; Pusack TJ; Stallings CD; Hixon MA
    Ecology; 2018 Jun; 99(6):1419-1429. PubMed ID: 29856493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations.
    Hidalgo M; Rossi V; Monroy P; Ser-Giacomi E; Hernández-García E; Guijarro B; Massutí E; Alemany F; Jadaud A; Perez JL; Reglero P
    Ecol Appl; 2019 Jul; 29(5):e01913. PubMed ID: 31144784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea.
    Treml EA; Ford JR; Black KP; Swearer SE
    Mov Ecol; 2015; 3(1):17. PubMed ID: 26180636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the importance of demographic connectivity in a marine metapopulation.
    Carson HS; Cook GS; López-Duarte PC; Levin LA
    Ecology; 2011 Oct; 92(10):1972-84. PubMed ID: 22073788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine reserves stabilize fish populations and fisheries yields in disturbed coral reef systems.
    Hopf JK; Jones GP; Williamson DH; Connolly SR
    Ecol Appl; 2019 Jul; 29(5):e01905. PubMed ID: 30985954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network theory and metapopulation persistence: incorporating node self-connections.
    Zamborain-Mason J; Russ GR; Abesamis RA; Bucol AA; Connolly SR
    Ecol Lett; 2017 Jul; 20(7):815-831. PubMed ID: 28612393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing spatial conservation prioritization methods with site- versus spatial dependency-based connectivity.
    Muenzel D; Critchell K; Cox C; Campbell SJ; Jakub R; Chollett I; Krueck N; Holstein D; Treml EA; Beger M
    Conserv Biol; 2023 Apr; 37(2):e14008. PubMed ID: 36178033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connectivity, cycles, and persistence thresholds in metapopulation networks.
    Artzy-Randrup Y; Stone L
    PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20700494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing connected marine reserves in the face of global warming.
    Álvarez-Romero JG; Munguía-Vega A; Beger M; Del Mar Mancha-Cisneros M; Suárez-Castillo AN; Gurney GG; Pressey RL; Gerber LR; Morzaria-Luna HN; Reyes-Bonilla H; Adams VM; Kolb M; Graham EM; VanDerWal J; Castillo-López A; Hinojosa-Arango G; Petatán-Ramírez D; Moreno-Baez M; Godínez-Reyes CR; Torre J
    Glob Chang Biol; 2018 Feb; 24(2):e671-e691. PubMed ID: 29274104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of a reef fish metapopulation via network connectivity: theory and data.
    Dedrick AG; Catalano KA; Stuart MR; White JW; Montes HR; Pinsky ML
    Ecol Lett; 2021 Jun; 24(6):1121-1132. PubMed ID: 33750002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersal and population connectivity are phenotype dependent in a marine metapopulation.
    Fobert EK; Treml EA; Swearer SE
    Proc Biol Sci; 2019 Aug; 286(1909):20191104. PubMed ID: 31455189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive persistence, spatial management, and conservation of metapopulations: An application to seagrass restoration.
    Aiken CM; Navarrete SA; Jackson EL
    Ecol Appl; 2023 Mar; 33(2):e2774. PubMed ID: 36315164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of connectivity on metapopulation persistence: network symmetry and degree correlations.
    Shtilerman E; Stone L
    Proc Biol Sci; 2015 May; 282(1806):20150203. PubMed ID: 25833858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design.
    Green AL; Maypa AP; Almany GR; Rhodes KL; Weeks R; Abesamis RA; Gleason MG; Mumby PJ; White AT
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1215-47. PubMed ID: 25423947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations.
    Treml EA; Roberts JJ; Chao Y; Halpin PN; Possingham HP; Riginos C
    Integr Comp Biol; 2012 Oct; 52(4):525-37. PubMed ID: 22821585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying critical regions in small-world marine metapopulations.
    Watson JR; Siegel DA; Kendall BE; Mitarai S; Rassweiller A; Gaines SD
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):E907-13. PubMed ID: 21987813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does colonization asymmetry matter in metapopulations?
    Vuilleumier S; Possingham HP
    Proc Biol Sci; 2006 Jul; 273(1594):1637-42. PubMed ID: 16769635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of dispersal patterns on marine reserves: does the tail wag the dog?
    Lockwood DR; Hastings A; Botsford LW
    Theor Popul Biol; 2002 May; 61(3):297-309. PubMed ID: 12027616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life history and matrix heterogeneity interact to shape metapopulation connectivity in spatially structured environments.
    Shima JS; Noonburg EG; Phillips NE
    Ecology; 2010 Apr; 91(4):1215-24. PubMed ID: 20462135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.