BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33565731)

  • 1. Heavy Chalcogenide-Based Ionic Liquids in Syntheses of Metal Chalcogenide Materials near Room Temperature.
    Guschlbauer J; Sundermeyer J
    ChemistryOpen; 2021 Feb; 10(2):92-96. PubMed ID: 33565731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homoleptic Group 13 Trimethylsilylchalcogenolato Metalates [M(ESiMe
    Guschlbauer J; Vollgraff T; Sundermeyer J
    Inorg Chem; 2019 Nov; 58(22):15385-15392. PubMed ID: 31687815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Series of Homoleptic Linear Trimethylsilylchalcogenido Cuprates, Argentates and Aurates Cat[Me
    Guschlbauer J; Vollgraff T; Xie X; Weigend F; Sundermeyer J
    Inorg Chem; 2020 Dec; 59(23):17565-17572. PubMed ID: 33197182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homoleptic trimethylsilylchalcogenolato zincates [Zn(ESiMe
    Guschlbauer J; Vollgraff T; Sundermeyer J
    Dalton Trans; 2020 Feb; 49(8):2517-2526. PubMed ID: 32022066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chalcogenido-Dimethylgallates and -Indates DMPyr
    Guschlbauer J; Vollgraff T; Finger LH; Harms K; Sundermeyer J
    ChemistryOpen; 2021 Feb; 10(2):83-91. PubMed ID: 33565735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable -ESiMe3 Complexes of Cu(I) and Ag(I) (E=S, Se) with NHCs: Synthons in Ternary Nanocluster Assembly.
    Azizpoor Fard M; Levchenko TI; Cadogan C; Humenny WJ; Corrigan JF
    Chemistry; 2016 Mar; 22(13):4543-50. PubMed ID: 26865473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of organic (trimethylsilyl)chalcogenolate salts Cat[TMS-E] (E = S, Se, Te): the methylcarbonate anion as a desilylating agent.
    Finger LH; Scheibe B; Sundermeyer J
    Inorg Chem; 2015 Oct; 54(19):9568-75. PubMed ID: 26371537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Expansion of Chalcogenido Tetrelates in Ionic Liquids by Incorporation of Sulfido Antimonate Units.
    Peters B; Krampe C; Klärner J; Dehnen S
    Chemistry; 2020 Dec; 26(70):16683-16689. PubMed ID: 32876359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diorganyl dichalcogenides as useful synthons for colloidal semiconductor nanocrystals.
    Brutchey RL
    Acc Chem Res; 2015 Nov; 48(11):2918-26. PubMed ID: 26545235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots.
    Jiang P; Zhu DL; Zhu CN; Zhang ZL; Zhang GJ; Pang DW
    Nanoscale; 2015 Dec; 7(45):19310-6. PubMed ID: 26531253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional semiconductor materials with high stability and electron mobility in group-11 chalcogenide compounds: MNX (M = Cu, Ag, Au; N = Cu, Ag, Au; X = S, Se, Te; M ≠ N).
    Shangguan W; Yan C; Li W; Long C; Liu L; Qi C; Li Q; Zhou Y; Guan Y; Gao L; Cai J
    Nanoscale; 2022 Mar; 14(11):4271-4280. PubMed ID: 35244105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble precursors for CuInSe2, CuIn(1-x)Ga(x)Se2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands.
    Jiang C; Lee JS; Talapin DV
    J Am Chem Soc; 2012 Mar; 134(11):5010-3. PubMed ID: 22329720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the assembly of chalcogenide anions in ionic liquids: from binary Ge/Se through ternary Ge/Sn/Se to binary Sn/Se frameworks.
    Lin Y; Massa W; Dehnen S
    Chemistry; 2012 Oct; 18(42):13427-34. PubMed ID: 22961959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity.
    Sobhanan J; Rival JV; Anas A; Sidharth Shibu E; Takano Y; Biju V
    Adv Drug Deliv Rev; 2023 Jun; 197():114830. PubMed ID: 37086917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.
    Yarema M; Pichler S; Sytnyk M; Seyrkammer R; Lechner RT; Fritz-Popovski G; Jarzab D; Szendrei K; Resel R; Korovyanko O; Loi MA; Paris O; Hesser G; Heiss W
    ACS Nano; 2011 May; 5(5):3758-65. PubMed ID: 21500803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals.
    Hasan S; San S; Baral K; Li N; Rulis P; Ching WY
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Counteranion on the Formation Pathway of Cu
    Ahmad R; Saddiqi NU; Wu M; Prato M; Spiecker E; Peukert W; Distaso M
    Inorg Chem; 2020 Feb; 59(3):1973-1984. PubMed ID: 31971380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution processed metal chalcogenide semiconductors for inorganic thin film photovoltaics.
    Turnley JW; Agrawal R
    Chem Commun (Camb); 2024 May; 60(40):5245-5269. PubMed ID: 38683572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid ammonia mediated metathesis: synthesis of binary metal chalcogenides and pnictides.
    Shaw GA; Parkin IP
    Inorg Chem; 2001 Dec; 40(27):6940-7. PubMed ID: 11754275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-mild synthesis of nanometric metal chalcogenides using organyl chalcogenide precursors.
    Mishra S
    Chem Commun (Camb); 2022 Sep; 58(73):10136-10153. PubMed ID: 36004549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.