BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33566017)

  • 21. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control and analysis of oriented thin films of lipid inverse bicontinuous cubic phases using grazing incidence small-angle X-ray scattering.
    Rittman M; Amenitsch H; Rappolt M; Sartori B; O'Driscoll BM; Squires AM
    Langmuir; 2013 Aug; 29(31):9874-80. PubMed ID: 23837868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid Identification of X-ray Diffraction Patterns Based on Very Limited Data by Interpretable Convolutional Neural Networks.
    Wang H; Xie Y; Li D; Deng H; Zhao Y; Xin M; Lin J
    J Chem Inf Model; 2020 Apr; 60(4):2004-2011. PubMed ID: 32208721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial neural networks for solution scattering data analysis.
    Molodenskiy DS; Svergun DI; Kikhney AG
    Structure; 2022 Jun; 30(6):900-908.e2. PubMed ID: 35413244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stacking of hexagonal nanocrystal layers during Langmuir-Blodgett deposition.
    Smilgies DM; Heitsch AT; Korgel BA
    J Phys Chem B; 2012 May; 116(20):6017-26. PubMed ID: 22537270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Grazing incidence wide angle x-ray scattering at the wiggler beamline BW4 of HASYLAB.
    Perlich J; Rubeck J; Botta S; Gehrke R; Roth SV; Ruderer MA; Prams SM; Rawolle M; Zhong Q; Körstgens V; Müller-Buschbaum P
    Rev Sci Instrum; 2010 Oct; 81(10):105105. PubMed ID: 21034117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural changes of deposited casein micelles induced by membrane filtration.
    Gebhardt R; Steinhauer T; Meyer P; Sterr J; Perlich J; Kulozik U
    Faraday Discuss; 2012; 158():77-88; discussion 105-24. PubMed ID: 23234162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques.
    Müller-Buschbaum P
    Adv Mater; 2014 Dec; 26(46):7692-709. PubMed ID: 24677365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction.
    Tetyczka C; Hodzic A; Kriechbaum M; Juraić K; Spirk C; Hartl S; Pritz E; Leitinger G; Roblegg E
    Eur J Pharm Biopharm; 2019 Jun; 139():153-160. PubMed ID: 30905779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III).
    Rawolle M; Körstgens V; Ruderer MA; Metwalli E; Guo S; Herzog G; Benecke G; Schwartzkopf M; Buffet A; Perlich J; Roth SV; Müller-Buschbaum P
    Rev Sci Instrum; 2012 Oct; 83(10):106104. PubMed ID: 23126818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CNN-LRP: Understanding Convolutional Neural Networks Performance for Target Recognition in SAR Images.
    Zang B; Ding L; Feng Z; Zhu M; Lei T; Xing M; Zhou X
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Convective assembly of 2D lattices of virus-like particles visualized by in-situ grazing-incidence small-angle X-ray scattering.
    Ashley CE; Dunphy DR; Jiang Z; Carnes EC; Yuan Z; Petsev DN; Atanassov PB; Velev OD; Sprung M; Wang J; Peabody DS; Brinker CJ
    Small; 2011 Apr; 7(8):1043-50. PubMed ID: 21425464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research of Epidemic Big Data Based on Improved Deep Convolutional Neural Network.
    Wang W
    Comput Math Methods Med; 2020; 2020():3641745. PubMed ID: 32774444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classification of schizophrenia and normal controls using 3D convolutional neural network and outcome visualization.
    Oh K; Kim W; Shen G; Piao Y; Kang NI; Oh IS; Chung YC
    Schizophr Res; 2019 Oct; 212():186-195. PubMed ID: 31395487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural evolution of perpendicular lamellae in diblock copolymer thin films during solvent vapor treatment investigated by grazing-incidence small-angle X-ray scattering.
    Zhang J; Posselt D; Sepe A; Shen X; Perlich J; Smilgies DM; Papadakis CM
    Macromol Rapid Commun; 2013 Aug; 34(16):1289-95. PubMed ID: 23843127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering.
    González-García L; Barranco A; Páez AM; González-Elipe AR; García-Gutiérrez MC; Hernández JJ; Rueda DR; Ezquerra TA; Babonneau D
    Chemphyschem; 2010 Jul; 11(10):2205-8. PubMed ID: 20491135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the learning mechanism of convolutional neural networks in spectral analysis.
    Zhang X; Xu J; Yang J; Chen L; Zhou H; Liu X; Li H; Lin T; Ying Y
    Anal Chim Acta; 2020 Jul; 1119():41-51. PubMed ID: 32439053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.