These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 33566048)
1. Near-infrared heavy-metal-free SnSe/ZnSe quantum dots for efficient photoelectrochemical hydrogen generation. Ren S; Wang M; Wang X; Han G; Zhang Y; Zhao H; Vomiero A Nanoscale; 2021 Feb; 13(6):3519-3527. PubMed ID: 33566048 [TBL] [Abstract][Full Text] [Related]
2. Controlled synthesis of near-infrared quantum dots for optoelectronic devices. Zhang H; Selopal GS; Zhou Y; Tong X; Benetti D; Jin L; Navarro-Pardo F; Wang Z; Sun S; Zhao H; Rosei F Nanoscale; 2017 Nov; 9(43):16843-16851. PubMed ID: 29072746 [TBL] [Abstract][Full Text] [Related]
3. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots. Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096 [TBL] [Abstract][Full Text] [Related]
4. Engineered Environment-Friendly Colloidal Core/Shell Quantum Dots for High-Efficiency Solar-Driven Photoelectrochemical Hydrogen Evolution. Long Z; Tong X; Wang R; Channa AI; Li X; You Y; Xia L; Cai M; Zhao H; Wang ZM ChemSusChem; 2022 May; 15(10):e202200346. PubMed ID: 35319829 [TBL] [Abstract][Full Text] [Related]
5. Tailoring Eco-Friendly Colloidal Quantum Dots for Photoelectrochemical Hydrogen Generation. Li Z; Channa AI; Wang ZM; Tong X Small; 2023 Dec; 19(50):e2305146. PubMed ID: 37632304 [TBL] [Abstract][Full Text] [Related]
6. Manipulating the Optoelectronic Properties of Quasi-type II CuInS Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789 [TBL] [Abstract][Full Text] [Related]
7. Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications. Zhao H; Liu J; Vidal F; Vomiero A; Rosei F Nanoscale; 2018 Sep; 10(36):17189-17197. PubMed ID: 30191225 [TBL] [Abstract][Full Text] [Related]
8. Highly Efficient Photoelectrochemical Hydrogen Production Using Nontoxic CuIn Kim J; Jang YJ; Baek W; Lee AR; Kim JY; Hyeon T; Lee JS ACS Appl Mater Interfaces; 2022 Jan; 14(1):603-610. PubMed ID: 34958547 [TBL] [Abstract][Full Text] [Related]
9. Environment-Benign Colloidal Quantum Dots-Modified Dual Photoelectrodes for Self-Biased Photoelectrochemical Water Splitting. Xia L; Li X; Yang Y; Tong X ChemSusChem; 2024 Aug; ():e202401298. PubMed ID: 39115637 [TBL] [Abstract][Full Text] [Related]
10. Surface Stoichiometry Control of Colloidal Heterostructured Quantum Dots for High-Performance Photoelectrochemical Hydrogen Generation. Tao Y; Tang Z; Bao D; Zhao H; Gao Z; Peng M; Zhang H; Wang K; Sun X Small; 2023 Apr; 19(15):e2206316. PubMed ID: 36642852 [TBL] [Abstract][Full Text] [Related]
11. A colloidal heterostructured quantum dot sensitized carbon nanotube-TiO Selopal GS; Mohammadnezhad M; Navarro-Pardo F; Vidal F; Zhao H; Wang ZM; Rosei F Nanoscale Horiz; 2019 Mar; 4(2):404-414. PubMed ID: 32254093 [TBL] [Abstract][Full Text] [Related]
12. Modulating the 0D/2D Interface of Hybrid Semiconductors for Enhanced Photoelectrochemical Performances. Li F; Benetti D; Zhang M; Feng J; Wei Q; Rosei F Small Methods; 2021 Aug; 5(8):e2100109. PubMed ID: 34927862 [TBL] [Abstract][Full Text] [Related]
13. Highly sensitive photoelectrochemical immunosensor for detecting cancer marker CA19-9 based on a new SnSe quantum dot. Gholamin D; Karami P; Pahlavan Y; Johari-Ahar M Mikrochim Acta; 2023 Mar; 190(4):154. PubMed ID: 36961600 [TBL] [Abstract][Full Text] [Related]
14. Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution. Zhang H; Liu J; Besteiro LV; Selopal GS; Zhao Z; Sun S; Rosei F Small; 2024 May; 20(22):e2306203. PubMed ID: 38128031 [TBL] [Abstract][Full Text] [Related]
15. Reaction-dependent optical behavior and theoretical perspectives of colloidal ZnSe quantum dots. Nguyen DH; Kim SH; Lee JS; Lee DS; Lee HS Sci Rep; 2024 Jun; 14(1):13982. PubMed ID: 38886547 [TBL] [Abstract][Full Text] [Related]
16. Effects of Mono- and Bifunctional Surface Ligands of Cu-In-Se Quantum Dots on Photoelectrochemical Hydrogen Production. Park SI; Jung SM; Kim JY; Yang J Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079393 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production. Zhao H; Jin L; Zhou Y; Bandar A; Fan Z; Govorov AO; Mi Z; Sun S; Rosei F; Vomiero A Nanotechnology; 2016 Dec; 27(49):495405. PubMed ID: 27834311 [TBL] [Abstract][Full Text] [Related]
18. Ligand-Engineered Quantum Dots Decorated Heterojunction Photoelectrodes for Self-Biased Solar Water Splitting. Cai M; Tong X; Zhao H; Li X; You Y; Wang R; Xia L; Zhou N; Wang L; Wang ZM Small; 2022 Nov; 18(46):e2204495. PubMed ID: 36148833 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in photoelectrochemical hydrogen production using I-III-VI quantum dots. Lee HC; Park JH; In SI; Yang J Nanoscale; 2024 May; 16(19):9295-9310. PubMed ID: 38683106 [TBL] [Abstract][Full Text] [Related]
20. Near-Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solar-Driven Hydrogen Production. Jin L; AlOtaibi B; Benetti D; Li S; Zhao H; Mi Z; Vomiero A; Rosei F Adv Sci (Weinh); 2016 Mar; 3(3):1500345. PubMed ID: 27668151 [No Abstract] [Full Text] [Related] [Next] [New Search]