BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33566048)

  • 1. Near-infrared heavy-metal-free SnSe/ZnSe quantum dots for efficient photoelectrochemical hydrogen generation.
    Ren S; Wang M; Wang X; Han G; Zhang Y; Zhao H; Vomiero A
    Nanoscale; 2021 Feb; 13(6):3519-3527. PubMed ID: 33566048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled synthesis of near-infrared quantum dots for optoelectronic devices.
    Zhang H; Selopal GS; Zhou Y; Tong X; Benetti D; Jin L; Navarro-Pardo F; Wang Z; Sun S; Zhao H; Rosei F
    Nanoscale; 2017 Nov; 9(43):16843-16851. PubMed ID: 29072746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots.
    Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered Environment-Friendly Colloidal Core/Shell Quantum Dots for High-Efficiency Solar-Driven Photoelectrochemical Hydrogen Evolution.
    Long Z; Tong X; Wang R; Channa AI; Li X; You Y; Xia L; Cai M; Zhao H; Wang ZM
    ChemSusChem; 2022 May; 15(10):e202200346. PubMed ID: 35319829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring Eco-Friendly Colloidal Quantum Dots for Photoelectrochemical Hydrogen Generation.
    Li Z; Channa AI; Wang ZM; Tong X
    Small; 2023 Dec; 19(50):e2305146. PubMed ID: 37632304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating the Optoelectronic Properties of Quasi-type II CuInS
    Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications.
    Zhao H; Liu J; Vidal F; Vomiero A; Rosei F
    Nanoscale; 2018 Sep; 10(36):17189-17197. PubMed ID: 30191225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient Photoelectrochemical Hydrogen Production Using Nontoxic CuIn
    Kim J; Jang YJ; Baek W; Lee AR; Kim JY; Hyeon T; Lee JS
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):603-610. PubMed ID: 34958547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Stoichiometry Control of Colloidal Heterostructured Quantum Dots for High-Performance Photoelectrochemical Hydrogen Generation.
    Tao Y; Tang Z; Bao D; Zhao H; Gao Z; Peng M; Zhang H; Wang K; Sun X
    Small; 2023 Apr; 19(15):e2206316. PubMed ID: 36642852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A colloidal heterostructured quantum dot sensitized carbon nanotube-TiO
    Selopal GS; Mohammadnezhad M; Navarro-Pardo F; Vidal F; Zhao H; Wang ZM; Rosei F
    Nanoscale Horiz; 2019 Mar; 4(2):404-414. PubMed ID: 32254093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating the 0D/2D Interface of Hybrid Semiconductors for Enhanced Photoelectrochemical Performances.
    Li F; Benetti D; Zhang M; Feng J; Wei Q; Rosei F
    Small Methods; 2021 Aug; 5(8):e2100109. PubMed ID: 34927862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive photoelectrochemical immunosensor for detecting cancer marker CA19-9 based on a new SnSe quantum dot.
    Gholamin D; Karami P; Pahlavan Y; Johari-Ahar M
    Mikrochim Acta; 2023 Mar; 190(4):154. PubMed ID: 36961600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution.
    Zhang H; Liu J; Besteiro LV; Selopal GS; Zhao Z; Sun S; Rosei F
    Small; 2024 May; 20(22):e2306203. PubMed ID: 38128031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Mono- and Bifunctional Surface Ligands of Cu-In-Se Quantum Dots on Photoelectrochemical Hydrogen Production.
    Park SI; Jung SM; Kim JY; Yang J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction-dependent optical behavior and theoretical perspectives of colloidal ZnSe quantum dots.
    Nguyen DH; Kim SH; Lee JS; Lee DS; Lee HS
    Sci Rep; 2024 Jun; 14(1):13982. PubMed ID: 38886547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production.
    Zhao H; Jin L; Zhou Y; Bandar A; Fan Z; Govorov AO; Mi Z; Sun S; Rosei F; Vomiero A
    Nanotechnology; 2016 Dec; 27(49):495405. PubMed ID: 27834311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-Engineered Quantum Dots Decorated Heterojunction Photoelectrodes for Self-Biased Solar Water Splitting.
    Cai M; Tong X; Zhao H; Li X; You Y; Wang R; Xia L; Zhou N; Wang L; Wang ZM
    Small; 2022 Nov; 18(46):e2204495. PubMed ID: 36148833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in photoelectrochemical hydrogen production using I-III-VI quantum dots.
    Lee HC; Park JH; In SI; Yang J
    Nanoscale; 2024 May; 16(19):9295-9310. PubMed ID: 38683106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solar-Driven Hydrogen Production.
    Jin L; AlOtaibi B; Benetti D; Li S; Zhao H; Mi Z; Vomiero A; Rosei F
    Adv Sci (Weinh); 2016 Mar; 3(3):1500345. PubMed ID: 27668151
    [No Abstract]   [Full Text] [Related]  

  • 20. Optoelectronic Properties in Near-Infrared Colloidal Heterostructured Pyramidal "Giant" Core/Shell Quantum Dots.
    Tong X; Kong XT; Wang C; Zhou Y; Navarro-Pardo F; Barba D; Ma D; Sun S; Govorov AO; Zhao H; Wang ZM; Rosei F
    Adv Sci (Weinh); 2018 Aug; 5(8):1800656. PubMed ID: 30128262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.