BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 33566726)

  • 21. Intramyocellular ceramides and skeletal muscle mitochondrial respiration are partially regulated by Toll-like receptor 4 during hindlimb unloading.
    Kwon OS; Nelson DS; Barrows KM; O'Connell RM; Drummond MJ
    Am J Physiol Regul Integr Comp Physiol; 2016 Nov; 311(5):R879-R887. PubMed ID: 27581814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal regulatory protein-α interacts with the insulin receptor contributing to muscle wasting in chronic kidney disease.
    Thomas SS; Dong Y; Zhang L; Mitch WE
    Kidney Int; 2013 Aug; 84(2):308-16. PubMed ID: 23515050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asymmetric superoxide release inside and outside the mitochondria in skeletal muscle under conditions of aging and disuse.
    Xu X; Chen CN; Arriaga EA; Thompson LV
    J Appl Physiol (1985); 2010 Oct; 109(4):1133-9. PubMed ID: 20689097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lack of Smad3 signaling leads to impaired skeletal muscle regeneration.
    Ge X; Vajjala A; McFarlane C; Wahli W; Sharma M; Kambadur R
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E90-102. PubMed ID: 22535746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial fat oxidation is essential for lipid-induced inflammation in skeletal muscle in mice.
    Warfel JD; Bermudez EM; Mendoza TM; Ghosh S; Zhang J; Elks CM; Mynatt R; Vandanmagsar B
    Sci Rep; 2016 Nov; 6():37941. PubMed ID: 27892502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial Dysfunction in Skeletal Muscle Pathologies.
    Abrigo J; Simon F; Cabrera D; Vilos C; Cabello-Verrugio C
    Curr Protein Pept Sci; 2019; 20(6):536-546. PubMed ID: 30947668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of muscle injury, repair, and regeneration.
    Tidball JG
    Compr Physiol; 2011 Oct; 1(4):2029-62. PubMed ID: 23733696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ALDH2 restores exhaustive exercise-induced mitochondrial dysfunction in skeletal muscle.
    Zhang Q; Zheng J; Qiu J; Wu X; Xu Y; Shen W; Sun M
    Biochem Biophys Res Commun; 2017 Apr; 485(4):753-760. PubMed ID: 28249782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
    Cannavino J; Brocca L; Sandri M; Grassi B; Bottinelli R; Pellegrino MA
    J Physiol; 2015 Apr; 593(8):1981-95. PubMed ID: 25565653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle.
    Corona BT; Garg K; Ward CL; McDaniel JS; Walters TJ; Rathbone CR
    Am J Physiol Cell Physiol; 2013 Oct; 305(7):C761-75. PubMed ID: 23885064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling.
    Yi J; Ma C; Li Y; Weisleder N; Ríos E; Ma J; Zhou J
    J Biol Chem; 2011 Sep; 286(37):32436-43. PubMed ID: 21795684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. S-allyl cysteine inhibits TNFα-induced skeletal muscle wasting through suppressing proteolysis and expression of inflammatory molecules.
    Dutt V; Saini V; Gupta P; Kaur N; Bala M; Gujar R; Grewal A; Gupta S; Dua A; Mittal A
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):895-906. PubMed ID: 29288771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial dysfunction: roles in skeletal muscle atrophy.
    Chen X; Ji Y; Liu R; Zhu X; Wang K; Yang X; Liu B; Gao Z; Huang Y; Shen Y; Liu H; Sun H
    J Transl Med; 2023 Jul; 21(1):503. PubMed ID: 37495991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Skeletal muscle-specific DJ-1 ablation-induced atrogenes expression and mitochondrial dysfunction contributing to muscular atrophy.
    Zhang S; Yan H; Ding J; Wang R; Feng Y; Zhang X; Kong X; Gong H; Lu X; Ma A; Hua Y; Liu H; Guo J; Gao H; Zhou Z; Wang R; Chen P; Liu T; Kong X
    J Cachexia Sarcopenia Muscle; 2023 Oct; 14(5):2126-2142. PubMed ID: 37469245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. p53 regulates skeletal muscle mitophagy and mitochondrial quality control following denervation-induced muscle disuse.
    Memme JM; Oliveira AN; Hood DA
    J Biol Chem; 2022 Feb; 298(2):101540. PubMed ID: 34958797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disuse-associated loss of the protease LONP1 in muscle impairs mitochondrial function and causes reduced skeletal muscle mass and strength.
    Xu Z; Fu T; Guo Q; Zhou D; Sun W; Zhou Z; Chen X; Zhang J; Liu L; Xiao L; Yin Y; Jia Y; Pang E; Chen Y; Pan X; Fang L; Zhu MS; Fei W; Lu B; Gan Z
    Nat Commun; 2022 Feb; 13(1):894. PubMed ID: 35173176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impaired Mitochondrial Energetics Characterize Poor Early Recovery of Muscle Mass Following Hind Limb Unloading in Old Mice.
    Zhang X; Trevino MB; Wang M; Gardell SJ; Ayala JE; Han X; Kelly DP; Goodpaster BH; Vega RB; Coen PM
    J Gerontol A Biol Sci Med Sci; 2018 Sep; 73(10):1313-1322. PubMed ID: 29562317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration?
    Kern H; Boncompagni S; Rossini K; Mayr W; Fanò G; Zanin ME; Podhorska-Okolow M; Protasi F; Carraro U
    J Neuropathol Exp Neurol; 2004 Sep; 63(9):919-31. PubMed ID: 15453091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial Apoptotic Signaling Involvement in Remodeling During Myogenesis and Skeletal Muscle Atrophy.
    Rahman FA; Quadrilatero J
    Semin Cell Dev Biol; 2023 Jul; 143():66-74. PubMed ID: 35241367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males.
    Wall BT; Dirks ML; Snijders T; Stephens FB; Senden JM; Verscheijden ML; van Loon LJ
    Exp Gerontol; 2015 Jan; 61():76-83. PubMed ID: 25457674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.