These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 33566760)

  • 1. DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning.
    Ryu D; Ryu D; Baek Y; Cho H; Kim G; Kim YS; Lee Y; Kim Y; Ye JC; Min HS; Park Y
    IEEE Trans Med Imaging; 2021 May; 40(5):1508-1518. PubMed ID: 33566760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deterministic regularization of three-dimensional optical diffraction tomography.
    Sung Y; Dasari RR
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1554-61. PubMed ID: 21811316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Diffuse Optical Tomography.
    Yoo J; Sabir S; Heo D; Kim KH; Wahab A; Choi Y; Lee SI; Chae EY; Kim HH; Bae YM; Choi YW; Cho S; Ye JC
    IEEE Trans Med Imaging; 2020 Apr; 39(4):877-887. PubMed ID: 31442973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.
    Matenine D; Mascolo-Fortin J; Goussard Y; Després P
    Med Phys; 2015 Nov; 42(11):6376-86. PubMed ID: 26520729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADMM-based deep reconstruction for limited-angle CT.
    Wang J; Zeng L; Wang C; Guo Y
    Phys Med Biol; 2019 May; 64(11):115011. PubMed ID: 30999287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography.
    Feng J; Sun Q; Li Z; Sun Z; Jia K
    J Biomed Opt; 2018 Dec; 24(5):1-12. PubMed ID: 30569669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AirNet: Fused analytical and iterative reconstruction with deep neural network regularization for sparse-data CT.
    Chen G; Hong X; Ding Q; Zhang Y; Chen H; Fu S; Zhao Y; Zhang X; Ji H; Wang G; Huang Q; Gao H
    Med Phys; 2020 Jul; 47(7):2916-2930. PubMed ID: 32274793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPU-based deep convolutional neural network for tomographic phase microscopy with ℓ1 fitting and regularization.
    Qiao H; Wu J; Li X; Shoreh MH; Fan J; Dai Q
    J Biomed Opt; 2018 Jun; 23(6):1-7. PubMed ID: 29905037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. k-Space deep learning for reference-free EPI ghost correction.
    Lee J; Han Y; Ryu JK; Park JY; Ye JC
    Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural networks-based regularization for large-scale medical image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kachelrieß M; Dewey M; Wald C; Kolbitsch C
    Phys Med Biol; 2020 Jul; 65(13):135003. PubMed ID: 32492660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image Reconstruction Using Deep Learning for Near-Infrared Optical Tomography: Generalization Assessment.
    Ackermann M; Jiang J; Russomanno E; Wolf M; Kalyanov A
    Adv Exp Med Biol; 2023; 1438():161-166. PubMed ID: 37845455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study.
    Liu CC; Huang HM
    Phys Med; 2020 Jan; 69():110-119. PubMed ID: 31869575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation.
    Shi T; Jiang H; Zheng B
    Comput Methods Programs Biomed; 2020 Dec; 197():105678. PubMed ID: 32791449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of U-curve method to select the regularization parameter for fluorescence diffuse optical tomography in phantom and small animal studies.
    Chamorro-Servent J; Aguirre J; Ripoll J; Vaquero JJ; Desco M
    Opt Express; 2011 Jun; 19(12):11490-506. PubMed ID: 21716381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous NODDI and GFA parameter map generation from subsampled q-space imaging using deep learning.
    Gibbons EK; Hodgson KK; Chaudhari AS; Richards LG; Majersik JJ; Adluru G; DiBella EVR
    Magn Reson Med; 2019 Apr; 81(4):2399-2411. PubMed ID: 30426558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse-view CT reconstruction based on multi-level wavelet convolution neural network.
    Lee M; Kim H; Kim HJ
    Phys Med; 2020 Dec; 80():352-362. PubMed ID: 33279829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.