These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33567254)

  • 21. Profiling the Protein Targets of Unmodified Bio-Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry.
    Hwang HY; Kim TY; Szász MA; Dome B; Malm J; Marko-Varga G; Kwon HJ
    Proteomics; 2020 May; 20(9):e1900325. PubMed ID: 31926115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining the mode of action of bioactive compounds.
    Azad MA; Wright GD
    Bioorg Med Chem; 2012 Mar; 20(6):1929-39. PubMed ID: 22300885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-affinity sigma-1 (σ
    Niso M; Mosier PD; Marottoli R; Ferorelli S; Cassano G; Gasparre G; Leopoldo M; Berardi F; Abate C
    Future Med Chem; 2019 Oct; 11(19):2547-2562. PubMed ID: 31633399
    [No Abstract]   [Full Text] [Related]  

  • 24. Target deconvolution from phenotype-based drug discovery by using chemical proteomics approaches.
    Kubota K; Funabashi M; Ogura Y
    Biochim Biophys Acta Proteins Proteom; 2019 Jan; 1867(1):22-27. PubMed ID: 30392561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell Painting-based bioactivity prediction boosts high-throughput screening hit-rates and compound diversity.
    Fredin Haslum J; Lardeau CH; Karlsson J; Turkki R; Leuchowius KJ; Smith K; Müllers E
    Nat Commun; 2024 Apr; 15(1):3470. PubMed ID: 38658534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic drug target deconvolution by mass spectrometry-based technologies.
    Noberini R; Bonaldi T
    Nat Struct Mol Biol; 2019 Oct; 26(10):854-857. PubMed ID: 31582842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and validation of bioactive small molecule target through phenotypic screening.
    Cho YS; Kwon HJ
    Bioorg Med Chem; 2012 Mar; 20(6):1922-8. PubMed ID: 22153994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biased and unbiased strategies to identify biologically active small molecules.
    Abet V; Mariani A; Truscott FR; Britton S; Rodriguez R
    Bioorg Med Chem; 2014 Aug; 22(16):4474-89. PubMed ID: 24811300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Target identification of small molecules based on chemical biology approaches.
    Futamura Y; Muroi M; Osada H
    Mol Biosyst; 2013 May; 9(5):897-914. PubMed ID: 23354001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Phenotypic Hit to Chemical Probe: Chemical Biology Approaches to Elucidate Small Molecule Action in Complex Biological Systems.
    Pasquer QTL; Tsakoumagkos IA; Hoogendoorn S
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33287212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of novel small-molecule inhibitors of human epidermal growth factor receptor-2: combined ligand and target-based approach.
    Gundla R; Kazemi R; Sanam R; Muttineni R; Sarma JA; Dayam R; Neamati N
    J Med Chem; 2008 Jun; 51(12):3367-77. PubMed ID: 18500794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. σ1 receptor ligands control a switch between passive and active threat responses.
    Rennekamp AJ; Huang XP; Wang Y; Patel S; Lorello PJ; Cade L; Gonzales AP; Yeh JR; Caldarone BJ; Roth BL; Kokel D; Peterson RT
    Nat Chem Biol; 2016 Jul; 12(7):552-8. PubMed ID: 27239788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic Profiling for Target Identification of Biologically Active Small Molecules Using 2D DIGE.
    Muroi M; Osada H
    Methods Mol Biol; 2019; 1888():127-139. PubMed ID: 30519944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Label-Free Proteome Profiling as a Quantitative Target Identification Technique for Bioactive Small Molecules.
    Hong KT; Lee JS
    Biochemistry; 2020 Jan; 59(3):213-215. PubMed ID: 31746590
    [No Abstract]   [Full Text] [Related]  

  • 35. Quantitative proteomics of kinase inhibitor targets and mechanisms.
    Daub H
    ACS Chem Biol; 2015 Jan; 10(1):201-12. PubMed ID: 25474541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of protein partners for small molecules reshapes the understanding of nonalcoholic steatohepatitis and drug discovery.
    Wang D; Wang Y
    Life Sci; 2024 Nov; 356():123031. PubMed ID: 39226989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical proteomics: terra incognita for novel drug target profiling.
    Huang F; Zhang B; Zhou S; Zhao X; Bian C; Wei Y
    Chin J Cancer; 2012 Nov; 31(11):507-18. PubMed ID: 22640626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The application of small molecule bioactive probes in the identification of cellular targets].
    Zhang J; Zhou HC
    Yao Xue Xue Bao; 2012 Mar; 47(3):299-306. PubMed ID: 22645752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiplexed Target Profiling with Integrated Chemical Genomics and Chemical Proteomics.
    Yang Y; Tse YS; Zhang Q; Wong KY; Yang C; Yang Y; Li S; Lau KW; Charles TC; Lam TC; Zhao Q
    J Med Chem; 2024 Oct; 67(19):17542-17550. PubMed ID: 39340453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal Proteome Profiling for Drug Target Identification and Probing of Protein States.
    Sauer P; Bantscheff M
    Methods Mol Biol; 2023; 2718():73-98. PubMed ID: 37665455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.