BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33567266)

  • 1. Three-dimensional chromatin ensemble reconstruction via stochastic embedding.
    Guarnera E; Tan ZW; Berezovsky IN
    Structure; 2021 Jun; 29(6):622-634.e3. PubMed ID: 33567266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disrupted chromatin architecture in olfactory sensory neurons: looking for the link from COVID-19 infection to anosmia.
    Tan ZW; Toong PJ; Guarnera E; Berezovsky IN
    Sci Rep; 2023 Apr; 13(1):5906. PubMed ID: 37041182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling.
    Rousseau M; Fraser J; Ferraiuolo MA; Dostie J; Blanchette M
    BMC Bioinformatics; 2011 Oct; 12():414. PubMed ID: 22026390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
    Tjong H; Li W; Kalhor R; Dai C; Hao S; Gong K; Zhou Y; Li H; Zhou XJ; Le Gros MA; Larabell CA; Chen L; Alber F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1663-72. PubMed ID: 26951677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable model for chromosome architecture.
    Di Pierro M; Zhang B; Aiden EL; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12168-12173. PubMed ID: 27688758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting three-dimensional genome organization with chromatin states.
    Qi Y; Zhang B
    PLoS Comput Biol; 2019 Jun; 15(6):e1007024. PubMed ID: 31181064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HSA: integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure.
    Zou C; Zhang Y; Ouyang Z
    Genome Biol; 2016 Mar; 17():40. PubMed ID: 26936376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of 3D Chromatin Interactions Using Hi-C.
    Hu G
    Methods Mol Biol; 2020; 2117():65-78. PubMed ID: 31960372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-GNOME 2.0: a three-dimensional genome modeling engine for predicting structural variation-driven alterations of chromatin spatial structure in the human genome.
    Wlasnowolski M; Sadowski M; Czarnota T; Jodkowska K; Szalaj P; Tang Z; Ruan Y; Plewczynski D
    Nucleic Acids Res; 2020 Jul; 48(W1):W170-W176. PubMed ID: 32442297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems Biology Approaches for Understanding Genome Architecture.
    Sewitz S; Lipkow K
    Methods Mol Biol; 2016; 1431():109-26. PubMed ID: 27283305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Scalable Computational Approach for Simulating Complexes of Multiple Chromosomes.
    Oliveira Junior AB; Contessoto VG; Mello MF; Onuchic JN
    J Mol Biol; 2021 Mar; 433(6):166700. PubMed ID: 33160979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing 3D Genome Organization in Multiple Species Using Phylo-HMRF.
    Yang Y; Zhang Y; Ren B; Dixon JR; Ma J
    Cell Syst; 2019 Jun; 8(6):494-505.e14. PubMed ID: 31229558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.