BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33567266)

  • 21. Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data.
    Kim HJ; Yardımcı GG; Bonora G; Ramani V; Liu J; Qiu R; Lee C; Hesson J; Ware CB; Shendure J; Duan Z; Noble WS
    PLoS Comput Biol; 2020 Sep; 16(9):e1008173. PubMed ID: 32946435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Producing genome structure populations with the dynamic and automated PGS software.
    Hua N; Tjong H; Shin H; Gong K; Zhou XJ; Alber F
    Nat Protoc; 2018 May; 13(5):915-926. PubMed ID: 29622804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational 3D genome modeling using Chrom3D.
    Paulsen J; Liyakat Ali TM; Collas P
    Nat Protoc; 2018 May; 13(5):1137-1152. PubMed ID: 29700484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test.
    Lagler TM; Abnousi A; Hu M; Yang Y; Li Y
    Am J Hum Genet; 2021 Feb; 108(2):257-268. PubMed ID: 33545029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities.
    Dai C; Li W; Tjong H; Hao S; Zhou Y; Li Q; Chen L; Zhu B; Alber F; Jasmine Zhou X
    Nat Commun; 2016 May; 7():11549. PubMed ID: 27240697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic chromatin accessibility modeled by Markov process of randomly-moving molecules in the 3D genome.
    Wang Y; Fan C; Zheng Y; Li C
    Nucleic Acids Res; 2017 Jun; 45(10):e85. PubMed ID: 28180283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring chromosome radial organization from Hi-C data.
    Das P; Shen T; McCord RP
    BMC Bioinformatics; 2020 Nov; 21(1):511. PubMed ID: 33167851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles.
    Chen Y; Wang Y; Xuan Z; Chen M; Zhang MQ
    Nucleic Acids Res; 2016 Jun; 44(11):e106. PubMed ID: 27060148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin 3D Reconstruction from Chromosomal Contacts Using a Genetic Algorithm.
    Kapilevich V; Seno S; Matsuda H; Takenaka Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1620-1626. PubMed ID: 29994156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
    Lieberman-Aiden E; van Berkum NL; Williams L; Imakaev M; Ragoczy T; Telling A; Amit I; Lajoie BR; Sabo PJ; Dorschner MO; Sandstrom R; Bernstein B; Bender MA; Groudine M; Gnirke A; Stamatoyannopoulos J; Mirny LA; Lander ES; Dekker J
    Science; 2009 Oct; 326(5950):289-93. PubMed ID: 19815776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Nucleome Data Bank: web-based resources to simulate and analyze the three-dimensional genome.
    Contessoto VG; Cheng RR; Hajitaheri A; Dodero-Rojas E; Mello MF; Lieberman-Aiden E; Wolynes PG; Di Pierro M; Onuchic JN
    Nucleic Acids Res; 2021 Jan; 49(D1):D172-D182. PubMed ID: 33021634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved accuracy assessment for 3D genome reconstructions.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2018 May; 19(1):196. PubMed ID: 29848293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
    Trieu T; Cheng J
    Bioinformatics; 2016 May; 32(9):1286-92. PubMed ID: 26722115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The sequencing bias relaxed characteristics of Hi-C derived data and implications for chromatin 3D modeling.
    Peng C; Fu LY; Dong PF; Deng ZL; Li JX; Wang XT; Zhang HY
    Nucleic Acids Res; 2013 Oct; 41(19):e183. PubMed ID: 23965308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions.
    Capurso D; Bengtsson H; Segal MR
    Nucleic Acids Res; 2016 Mar; 44(5):2028-35. PubMed ID: 26869583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MHiC, an integrated user-friendly tool for the identification and visualization of significant interactions in Hi-C data.
    Khakmardan S; Rezvani M; Pouyan AA; Fateh M; Alinejad-Rokny H
    BMC Genomics; 2020 Mar; 21(1):225. PubMed ID: 32164554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.