BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 33567299)

  • 1. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities.
    Atinafu DG; Yun BY; Wi S; Kang Y; Kim S
    Environ Res; 2021 Apr; 195():110853. PubMed ID: 33567299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Preparation of Carbon Based Composite Phase Change Material for Energy Piles.
    Yang H; Memon SA; Bao X; Cui H; Li D
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Int J Biol Macromol; 2022 Dec; 222(Pt B):3001-3013. PubMed ID: 36244531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycled Polyethylene/Paraffin Wax/Expanded Graphite Based Heat Absorbers for Thermal Energy Storage: An Artificial Aging Study.
    Abdelrazeq H; Sobolčiak P; Al-Ali Al-Maadeed M; Ouederni M; Krupa I
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30925735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Unique Strategy for Polyethylene Glycol/Hybrid Carbon Foam Phase Change Materials: Morphologies, Thermal Properties, and Energy Storage Behavior.
    Su X; Jia S; Lv G; Yu D
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30336611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infiltration properties of n-alkanes in mesoporous biochar: The capacity of smokeless support for stability and energy storage.
    Atinafu DG; Chang SJ; Kim S
    J Hazard Mater; 2020 Nov; 399():123041. PubMed ID: 32521320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of biochar co-mediated chitosan mesopores to encapsulate alkane and improve thermal properties.
    Atinafu DG; Yang S; Yun BY; Kang Y; Kim S
    Environ Res; 2022 Sep; 212(Pt D):113539. PubMed ID: 35623444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Functional Aligned and Interconnected Graphite Nanoplatelet Networks for Accelerating Solar Thermal Energy Harvesting and Storage within Phase Change Materials.
    Wu S; Li T; Wu M; Xu J; Chao J; Hu Y; Yan T; Li QY; Wang R
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19200-19210. PubMed ID: 33871977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy storage and key derives of octadecane thermal stability during phase change assembly with animal manure-derived biochar.
    Atinafu DG; Choi JY; Yun BY; Nam J; Kim HB; Kim S
    Environ Res; 2024 Jan; 240(Pt 1):117405. PubMed ID: 37838193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkylated Nanofibrillated Cellulose/Carbon Nanotubes Aerogels Supported Form-Stable Phase Change Composites with Improved
    Du X; Qiu J; Deng S; Du Z; Cheng X; Wang H
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5695-5703. PubMed ID: 31920067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage.
    Li C; Fu L; Ouyang J; Yang H
    Sci Rep; 2013; 3():1908. PubMed ID: 23712069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage.
    Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV
    Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compatibility of Phase Change Materials and Metals: Experimental Evaluation Based on the Corrosion Rate.
    Ostrý M; Bantová S; Struhala K
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Thermo-Physical Properties of Expanded Vermiculite-Based Organic Composite Phase Change Materials for Improving the Thermal Energy Storage Efficiency.
    Song S; Li J; Yang Z; Wang C
    ACS Omega; 2021 Feb; 6(5):3891-3899. PubMed ID: 33585768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of biochar pyrolysis temperature on thermal properties of polyethylene glycol/biochar composites as shape-stable biocomposite phase change materials.
    Liu S; Peng S; Zhang B; Xue B; Yang Z; Wang S; Xu G
    RSC Adv; 2022 Mar; 12(16):9587-9598. PubMed ID: 35424955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential utility of HKUST-1-graphite nanocomposite to endow alkane with high thermal properties and low electrical resistivity.
    Atinafu DG; Chang SJ; Berardi U; Kim KH; Kim S
    J Hazard Mater; 2021 Jan; 402():123695. PubMed ID: 33254751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Analysis of Phase Change Materials (PCMs)/Expanded Graphite (EG) Composites and Their Thermal Behavior under Hot and Humid Conditions.
    Yang K; Zhang X; Venkataraman M; Wiener J; Palanisamy S; Sozcu S; Tan X; Kremenakova D; Zhu G; Yao J; Militky J
    Chempluschem; 2023 Apr; 88(4):e202300081. PubMed ID: 36951444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, thermal storage properties and application of sodium acetate trihydrate/expanded graphite composite phase change materials.
    Wang KW; Yan T; Meng LC; Pan WG
    Dalton Trans; 2023 Oct; 52(40):14537-14548. PubMed ID: 37781877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eutectic Fatty Acids Phase Change Materials Improved with Expanded Graphite.
    Wang Z; Huang G; Jia Z; Gao Q; Li Y; Gu Z
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Change Materials for Electro-Thermal Conversion and Storage: From Fundamental Understanding to Engineering Design.
    Chen X; Tang Z; Gao H; Chen S; Wang G
    iScience; 2020 Jun; 23(6):101208. PubMed ID: 32531748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.