BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33567342)

  • 21. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria.
    Fleck N; Grundner C
    J Biol Chem; 2021 Aug; 297(2):100990. PubMed ID: 34298016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas12a System for Biosensing and Gene Regulation.
    Shi Y; Fu X; Yin Y; Peng F; Yin X; Ke G; Zhang X
    Chem Asian J; 2021 Apr; 16(8):857-867. PubMed ID: 33638271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-Cas12a system in fission yeast for multiplex genomic editing and CRISPR interference.
    Zhao Y; Boeke JD
    Nucleic Acids Res; 2020 Jun; 48(10):5788-5798. PubMed ID: 32374858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved genome editing by an engineered CRISPR-Cas12a.
    Ma E; Chen K; Shi H; Stahl EC; Adler B; Trinidad M; Liu J; Zhou K; Ye J; Doudna JA
    Nucleic Acids Res; 2022 Dec; 50(22):12689-12701. PubMed ID: 36537251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays.
    Liao C; Slotkowski RA; Achmedov T; Beisel CL
    RNA Biol; 2019 Apr; 16(4):404-412. PubMed ID: 30252595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a.
    Wolter F; Puchta H
    Plant J; 2019 Dec; 100(5):1083-1094. PubMed ID: 31381206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica.
    Yang Z; Xu P
    Methods Mol Biol; 2021; 2307():111-121. PubMed ID: 33847985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of a CRISPR/FnCas12a multi-sites editing system for inhibiting proliferation of Bombyx mori nuclearpolyhedrosisvirus.
    Liao N; Dong Z; Zhang X; Qin Q; Luo Y; Huang L; Chen P; Lu C; Pan M
    Int J Biol Macromol; 2021 Dec; 193(Pt A):585-591. PubMed ID: 34699896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CT5, a subtle in vitro DNA assembling method based on the combination of FnCas12a and T5 exonuclease.
    Dong M; Wang F; Lv B; Mei M; Ma L; Hu Y; Zhai C
    Biotechnol Lett; 2021 Apr; 43(4):899-907. PubMed ID: 33389273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering of a compact, high-fidelity EbCas12a variant that can be packaged with its crRNA into an all-in-one AAV vector delivery system.
    Wang H; Zhou J; Lei J; Mo G; Wu Y; Liu H; Pang Z; Du M; Zhou Z; Paek C; Sun Z; Chen Y; Wang Y; Chen P; Yin L
    PLoS Biol; 2024 May; 22(5):e3002619. PubMed ID: 38814985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome editing in mammalian cells using the CRISPR type I-D nuclease.
    Osakabe K; Wada N; Murakami E; Miyashita N; Osakabe Y
    Nucleic Acids Res; 2021 Jun; 49(11):6347-6363. PubMed ID: 34076237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing.
    Chen P; Zhou J; Wan Y; Liu H; Li Y; Liu Z; Wang H; Lei J; Zhao K; Zhang Y; Wang Y; Zhang X; Yin L
    Genome Biol; 2020 Mar; 21(1):78. PubMed ID: 32213191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allosteric activation of CRISPR-Cas12a requires the concerted movement of the bridge helix and helix 1 of the RuvC II domain.
    Wörle E; Newman A; D'Silva J; Burgio G; Grohmann D
    Nucleic Acids Res; 2022 Sep; 50(17):10153-10168. PubMed ID: 36107767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular recordings by directed CRISPR spacer acquisition.
    Shipman SL; Nivala J; Macklis JD; Church GM
    Science; 2016 Jul; 353(6298):aaf1175. PubMed ID: 27284167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina.
    Yang TC; Chang CY; Yarmishyn AA; Mao YS; Yang YP; Wang ML; Hsu CC; Yang HY; Hwang DK; Chen SJ; Tsai ML; Lai YH; Tzeng Y; Chang CC; Chiou SH
    Acta Biomater; 2020 Jan; 101():484-494. PubMed ID: 31672582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress in CRISPR/Cas9 Technology.
    Mei Y; Wang Y; Chen H; Sun ZS; Ju XD
    J Genet Genomics; 2016 Feb; 43(2):63-75. PubMed ID: 26924689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cas12a Genome Editing at the Whole-Plant Level Using Two Compatible RNA Virus Vectors.
    Uranga M; Vazquez-Vilar M; Orzáez D; Daròs JA
    CRISPR J; 2021 Oct; 4(5):761-769. PubMed ID: 34558964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response.
    Wang X; Ding C; Yu W; Wang Y; He S; Yang B; Xiong YC; Wei J; Li J; Liang J; Lu Z; Zhu W; Wu J; Zhou Z; Huang X; Liu Z; Yang L; Chen J
    Cell Rep; 2020 Jun; 31(9):107723. PubMed ID: 32492431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.