These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33567620)

  • 1. A Generative Adversarial Network-Based Image Denoiser Controlling Heterogeneous Losses.
    Cho SI; Park JH; Kang SJ
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33567620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-dose CT denoising via convolutional neural network with an observer loss function.
    Han M; Shim H; Baek J
    Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adversarial Gaussian Denoiser for Multiple-Level Image Denoising.
    Khan A; Jin W; Haider A; Rahman M; Wang D
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN).
    Li Z; Tian Q; Ngamsombat C; Cartmell S; Conklin J; Filho ALMG; Lo WC; Wang G; Ying K; Setsompop K; Fan Q; Bilgic B; Cauley S; Huang SY
    Med Phys; 2022 Feb; 49(2):1000-1014. PubMed ID: 34961944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss.
    Zhang L; Zhang J
    PeerJ Comput Sci; 2022; 8():e873. PubMed ID: 35494868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artifact and Detail Attention Generative Adversarial Networks for Low-Dose CT Denoising.
    Zhang X; Han Z; Shangguan H; Han X; Cui X; Wang A
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3901-3918. PubMed ID: 34329159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating synthetic CTs from magnetic resonance images using generative adversarial networks.
    Emami H; Dong M; Nejad-Davarani SP; Glide-Hurst CK
    Med Phys; 2018 Jun; ():. PubMed ID: 29901223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin lesion segmentation via generative adversarial networks with dual discriminators.
    Lei B; Xia Z; Jiang F; Jiang X; Ge Z; Xu Y; Qin J; Chen S; Wang T; Wang S
    Med Image Anal; 2020 Aug; 64():101716. PubMed ID: 32492581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution.
    Lucas A; Lopez-Tapia S; Molina R; Katsaggelos AK
    IEEE Trans Image Process; 2019 Jul; 28(7):3312-3327. PubMed ID: 30714918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TextureWGAN: texture preserving WGAN with multitask regularizer for computed tomography inverse problems.
    Ikuta M; Zhang J
    J Med Imaging (Bellingham); 2023 Mar; 10(2):024003. PubMed ID: 36895762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Super-resolution construction of intravascular ultrasound images using generative adversarial networks].
    Wu Y; Yang F; Huang J; Liu Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jan; 39(1):82-87. PubMed ID: 30692071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital radiography image denoising using a generative adversarial network.
    Sun Y; Liu X; Cong P; Li L; Zhao Z
    J Xray Sci Technol; 2018; 26(4):523-534. PubMed ID: 29889095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a Modified Generative Adversarial Network in the Superresolution Reconstruction of Ancient Murals.
    Cao J; Zhang Z; Zhao A
    Comput Intell Neurosci; 2020; 2020():6670976. PubMed ID: 33456451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dilated conditional GAN for bone suppression in chest radiographs with enforced semantic features.
    Zhou Z; Zhou L; Shen K
    Med Phys; 2020 Dec; 47(12):6207-6215. PubMed ID: 32621786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.
    Yang Q; Yan P; Zhang Y; Yu H; Shi Y; Mou X; Kalra MK; Zhang Y; Sun L; Wang G
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1348-1357. PubMed ID: 29870364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network.
    Zhu F; Ye F; Fu Y; Liu Q; Shen B
    Sci Rep; 2019 May; 9(1):6734. PubMed ID: 31043666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.