These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 33567644)
21. Review of analytical studies on TiO Xu F Chemosphere; 2018 Dec; 212():662-677. PubMed ID: 30173113 [TBL] [Abstract][Full Text] [Related]
22. Stability evolution of ultrafine Ag nanoparticles prepared by laser ablation in liquids. Chen Q; Ye Y; Liu J; Wu S; Li P; Liang C J Colloid Interface Sci; 2021 Mar; 585():444-451. PubMed ID: 33097224 [TBL] [Abstract][Full Text] [Related]
23. Assessment of strategies for the formation of stable suspensions of titanium dioxide nanoparticles in aqueous media suitable for the analysis of biological fluids. Salou S; Cirtiu CM; Larivière D; Fleury N Anal Bioanal Chem; 2020 Mar; 412(7):1469-1481. PubMed ID: 32034456 [TBL] [Abstract][Full Text] [Related]
24. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations. Yang XN; Cui FY Water Sci Technol; 2013; 68(2):276-82. PubMed ID: 23863417 [TBL] [Abstract][Full Text] [Related]
25. Sonocatalytic degradation of EDTA in the presence of Ti and Ti@TiO El Hakim S; Chave T; Nikitenko SI Ultrason Sonochem; 2021 Jan; 70():105336. PubMed ID: 32942166 [TBL] [Abstract][Full Text] [Related]
26. Study on Dispersion of TiO Kao JY; Cheng WT ACS Omega; 2020 Feb; 5(4):1832-1839. PubMed ID: 32039319 [TBL] [Abstract][Full Text] [Related]
27. Nanoparticle size and combined toxicity of TiO2 and DSLS (surfactant) contribute to lysosomal responses in digestive cells of mussels exposed to TiO2 nanoparticles. Jimeno-Romero A; Oron M; Cajaraville MP; Soto M; Marigómez I Nanotoxicology; 2016 Oct; 10(8):1168-76. PubMed ID: 27241615 [TBL] [Abstract][Full Text] [Related]
28. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters. Li L; Sillanpää M; Risto M Environ Pollut; 2016 Dec; 219():132-138. PubMed ID: 27814528 [TBL] [Abstract][Full Text] [Related]
29. Predictions of TiO2-driven migration of Se(IV) based on an integrated study of TiO2 colloid stability and Se(IV) surface adsorption. Benedicto A; Missana T; Degueldre C Sci Total Environ; 2013 Apr; 449():214-22. PubMed ID: 23428751 [TBL] [Abstract][Full Text] [Related]
30. Role of pH and ionic strength in the aggregation of TiO Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037 [TBL] [Abstract][Full Text] [Related]
31. Characterization of titanium dioxide nanoparticle removal in simulated drinking water treatment processes. Chang HH; Cheng TJ; Huang CP; Wang GS Sci Total Environ; 2017 Dec; 601-602():886-894. PubMed ID: 28582734 [TBL] [Abstract][Full Text] [Related]
33. Effects of Titanium Dioxide Nanoparticles on the Kazimirova A; El Yamani N; Rubio L; García-Rodríguez A; Barancokova M; Marcos R; Dusinska M Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32150818 [TBL] [Abstract][Full Text] [Related]
34. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Godinez IG; Darnault CJ Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120 [TBL] [Abstract][Full Text] [Related]
35. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Allouni ZE; Cimpan MR; Høl PJ; Skodvin T; Gjerdet NR Colloids Surf B Biointerfaces; 2009 Jan; 68(1):83-7. PubMed ID: 18980834 [TBL] [Abstract][Full Text] [Related]
36. Stability and aggregation of nanoscale titanium dioxide particle (nTiO Tang Z; Cheng T Chemosphere; 2018 Feb; 192():51-58. PubMed ID: 29091797 [TBL] [Abstract][Full Text] [Related]
37. Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions. Li Q; Li T; Liu C; DeLoid G; Pyrgiotakis G; Demokritou P; Zhang R; Xiao H; McClements DJ Nanotoxicology; 2017; 11(9-10):1087-1101. PubMed ID: 29160733 [TBL] [Abstract][Full Text] [Related]
38. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics. Bouhaik IS; Leroy P; Ollivier P; Azaroual M; Mercury L J Colloid Interface Sci; 2013 Sep; 406():75-85. PubMed ID: 23806415 [TBL] [Abstract][Full Text] [Related]
39. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Suttiponparnit K; Jiang J; Sahu M; Suvachittanont S; Charinpanitkul T; Biswas P Nanoscale Res Lett; 2011 Dec; 6(1):27. PubMed ID: 27502650 [TBL] [Abstract][Full Text] [Related]
40. Enzymatic hydrolysis as a sample pre-treatment for titanium dioxide nanoparticles assessment in surimi (crab sticks) by single particle ICP-MS. Taboada-López MV; Herbello-Hermelo P; Domínguez-González R; Bermejo-Barrera P; Moreda-Piñeiro A Talanta; 2019 Apr; 195():23-32. PubMed ID: 30625537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]