BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33568049)

  • 1. Ranking cancer drivers via betweenness-based outlier detection and random walks.
    Erten C; Houdjedj A; Kazan H
    BMC Bioinformatics; 2021 Feb; 22(1):62. PubMed ID: 33568049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes.
    Dopazo J; Erten C
    BMC Syst Biol; 2017 Nov; 11(1):110. PubMed ID: 29166896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PersonaDrive: a method for the identification and prioritization of personalized cancer drivers.
    Erten C; Houdjedj A; Kazan H; Taleb Bahmed AA
    Bioinformatics; 2022 Jun; 38(13):3407-3414. PubMed ID: 35579340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph.
    Wang C; Shi J; Cai J; Zhang Y; Zheng X; Zhang N
    BMC Bioinformatics; 2022 Jul; 23(1):277. PubMed ID: 35831792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A random walk-based method to identify driver genes by integrating the subcellular localization and variation frequency into bipartite graph.
    Song J; Peng W; Wang F
    BMC Bioinformatics; 2019 May; 20(1):238. PubMed ID: 31088372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives.
    Zhu K; Liu Q; Zhou Y; Tao C; Zhao Z; Sun J; Xu H
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 26099335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Cancer genes by combining two-rounds RWR based on multiple biological data.
    Zhang W; Lei Ieee Member X; Bian C
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):518. PubMed ID: 31760937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIT'nDRIVE: patient-specific multidriver gene prioritization for precision oncology.
    Shrestha R; Hodzic E; Sauerwald T; Dao P; Wang K; Yeung J; Anderson S; Vandin F; Haffari G; Collins CC; Sahinalp SC
    Genome Res; 2017 Sep; 27(9):1573-1588. PubMed ID: 28768687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Graph Convolution Network-Based Model for Prioritizing Personalized Cancer Driver Genes of Individual Patients.
    Peng W; Yu P; Dai W; Fu X; Liu L; Pan Y
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):744-754. PubMed ID: 37195839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel heterophilic graph diffusion convolutional network for identifying cancer driver genes.
    Zhang T; Zhang SW; Xie MY; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37055234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network.
    Akhavan-Safar M; Teimourpour B
    Biosystems; 2021 Mar; 201():104326. PubMed ID: 33309969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MECoRank: cancer driver genes discovery simultaneously evaluating the impact of SNVs and differential expression on transcriptional networks.
    Hui Y; Wei PJ; Xia J; Wang YT; Zheng CH
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):140. PubMed ID: 31888623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving cancer driver gene identification using multi-task learning on graph convolutional network.
    Peng W; Tang Q; Dai W; Chen T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.