BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33568049)

  • 21. Aggregated network centrality shows non-random structure of genomic and proteomic networks.
    Halder AK; Denkiewicz M; Sengupta K; Basu S; Plewczynski D
    Methods; 2020 Oct; 181-182():5-14. PubMed ID: 31740366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation.
    Huang Y; Chen F; Sun H; Zhong C
    BMC Bioinformatics; 2024 Jan; 25(1):34. PubMed ID: 38254011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variability of Betweenness Centrality and Its Effect on Identifying Essential Genes.
    Durón C; Pan Y; Gutmann DH; Hardin J; Radunskaya A
    Bull Math Biol; 2019 Sep; 81(9):3655-3673. PubMed ID: 30350013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene Prioritization and Network Topology Analysis of Targeted Genes for Acquired Taxane Resistance by Meta-Analysis.
    Kim D; Lee YS; Kim JK; Kim SY
    Crit Rev Eukaryot Gene Expr; 2019; 29(6):581-597. PubMed ID: 32422012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method.
    Amgalan B; Lee H
    Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning.
    Zhou W; Zhao Z; Wang R; Han Y; Wang C; Yang F; Han Y; Liang H; Qi L; Wang C; Guo Z; Gu Y
    Mol Oncol; 2017 Oct; 11(10):1459-1474. PubMed ID: 28719033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prioritizing Cancer Genes Based on an Improved Random Walk Method.
    Wei PJ; Wu FX; Xia J; Su Y; Wang J; Zheng CH
    Front Genet; 2020; 11():377. PubMed ID: 32411180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. driveR: a novel method for prioritizing cancer driver genes using somatic genomics data.
    Ülgen E; Sezerman OU
    BMC Bioinformatics; 2021 May; 22(1):263. PubMed ID: 34030627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ABCDE: Approximating Betweenness-Centrality ranking with progressive-DropEdge.
    Mirakyan M
    PeerJ Comput Sci; 2021; 7():e699. PubMed ID: 34604524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A network-based method for identifying cancer driver genes based on node control centrality.
    Li F; Li H; Shang J; Liu JX; Dai L; Liu X; Li Y
    Exp Biol Med (Maywood); 2023 Feb; 248(3):232-241. PubMed ID: 36573462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer.
    Baur B; Bozdag S
    Genomics; 2017 Jul; 109(3-4):233-240. PubMed ID: 28438487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.
    Cava C; Bertoli G; Colaprico A; Olsen C; Bontempi G; Castiglioni I
    BMC Genomics; 2018 Jan; 19(1):25. PubMed ID: 29304754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GenHITS: A network science approach to driver gene detection in human regulatory network using gene's influence evaluation.
    Akhavan-Safar M; Teimourpour B; Kargari M
    J Biomed Inform; 2021 Feb; 114():103661. PubMed ID: 33326867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clone temporal centrality measures for incomplete sequences of graph snapshots.
    Hanke M; Foraita R
    BMC Bioinformatics; 2017 May; 18(1):261. PubMed ID: 28511665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of critical microRNA gene targets in cervical cancer using network properties.
    Sharma G; Agarwal SM
    Microrna; 2014; 3(1):37-44. PubMed ID: 25069511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.