These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33568056)

  • 1. Reduced expression of a subunit gene of sucrose non-fermenting 1 related kinase, PpSnRK1βγ, confers flat fruit abortion in peach by regulating sugar and starch metabolism.
    Guo J; Cao K; Yao JL; Deng C; Li Y; Zhu G; Fang W; Chen C; Wang X; Wu J; Guo W; Wang L
    BMC Plant Biol; 2021 Feb; 21(1):88. PubMed ID: 33568056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Sugar Components and Genes Involved in the Regulation of Sucrose Accumulation in Peach Fruit.
    Vimolmangkang S; Zheng H; Peng Q; Jiang Q; Wang H; Fang T; Liao L; Wang L; He H; Han Y
    J Agric Food Chem; 2016 Sep; 64(35):6723-9. PubMed ID: 27537219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 1.7-Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach.
    Zhou H; Ma R; Gao L; Zhang J; Zhang A; Zhang X; Ren F; Zhang W; Liao L; Yang Q; Xu S; Otieno Ogutu C; Zhao J; Yu M; Jiang Q; Korban SS; Han Y
    Plant Biotechnol J; 2021 Jan; 19(1):192-205. PubMed ID: 32722872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abscisic acid induces PpeKIL1 to terminate fruit growth and promote fruit abortion in peach (Prunus persica).
    Zhou H; Wang X; Amar MH; Sheng Y; Shi P; Qiu K; Wang Y; Xie Q; Chen H; Pan H; Zhang J
    Plant Physiol Biochem; 2024 Jul; 212():108761. PubMed ID: 38805756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Analysis Reveals the Regulatory Role of
    Peng Q; Wang L; Ogutu C; Liu J; Liu L; Mollah MDA; Han Y
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated peach genome structural variation map uncovers genes associated with fruit traits.
    Guo J; Cao K; Deng C; Li Y; Zhu G; Fang W; Chen C; Wang X; Wu J; Guan L; Wu S; Guo W; Yao JL; Fei Z; Wang L
    Genome Biol; 2020 Oct; 21(1):258. PubMed ID: 33023652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development.
    Desnoues E; Baldazzi V; Génard M; Mauroux JB; Lambert P; Confolent C; Quilot-Turion B
    J Exp Bot; 2016 May; 67(11):3419-31. PubMed ID: 27117339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits.
    Li J; Li F; Qian M; Han M; Liu H; Zhang D; Ma J; Zhao C
    Plant Sci; 2017 Apr; 257():63-73. PubMed ID: 28224919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape.
    Guan J; Xu Y; Yu Y; Fu J; Ren F; Guo J; Zhao J; Jiang Q; Wei J; Xie H
    Genome Biol; 2021 Jan; 22(1):13. PubMed ID: 33402202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salicylic acid treatment mitigates chilling injury in peach fruit by regulation of sucrose metabolism and soluble sugar content.
    Zhao Y; Song C; Brummell DA; Qi S; Lin Q; Bi J; Duan Y
    Food Chem; 2021 Oct; 358():129867. PubMed ID: 33979685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification and transcriptome profiling reveal that E3 ubiquitin ligase genes relevant to ethylene, auxin and abscisic acid are differentially expressed in the fruits of melting flesh and stony hard peach varieties.
    Tan B; Lian X; Cheng J; Zeng W; Zheng X; Wang W; Ye X; Li J; Li Z; Zhang L; Feng J
    BMC Genomics; 2019 Nov; 20(1):892. PubMed ID: 31752682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome Analysis of Pre-Storage 1-MCP and High CO
    Choi HR; Jeong MJ; Baek MW; Choi JH; Lee HC; Jeong CS; Tilahun S
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis of peach (Prunus persica L. Batsch) during the late stage of fruit ripening.
    Pan HF; Sheng Y; Gao ZH; Chen HL; Qi YJ; Yi XK; Qin GH; Zhang JY
    Genet Mol Res; 2016 Dec; 15(4):. PubMed ID: 28081283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals.
    Wang X; Pan L; Wang Y; Meng J; Deng L; Niu L; Liu H; Ding Y; Yao JL; Nieuwenhuizen NJ; Ampomah-Dwamena C; Lu Z; Cui G; Wang Z; Zeng W
    Plant Sci; 2021 Dec; 313():111084. PubMed ID: 34763869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative network analysis reveals the dynamics of organic acid diversity during fruit ripening in peach (Prunus persica L. Batsch).
    Jiang X; Liu K; Peng H; Fang J; Zhang A; Han Y; Zhang X
    BMC Plant Biol; 2023 Jan; 23(1):16. PubMed ID: 36617558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic model of sugar metabolism in peach fruit reveals a functional hypothesis of a markedly low fructose-to-glucose ratio phenotype.
    Desnoues E; Génard M; Quilot-Turion B; Baldazzi V
    Plant J; 2018 May; 94(4):685-698. PubMed ID: 29543354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing.
    Li S; Shao Z; Fu X; Xiao W; Li L; Chen M; Sun M; Li D; Gao D
    BMC Genomics; 2017 Dec; 18(1):938. PubMed ID: 29197334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of organic acid accumulation and its related genes in peach.
    Zheng B; Zhao L; Jiang X; Cherono S; Liu J; Ogutu C; Ntini C; Zhang X; Han Y
    Food Chem; 2021 Jan; 334():127567. PubMed ID: 32707362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies.
    Biscarini F; Nazzicari N; Bink M; Arús P; Aranzana MJ; Verde I; Micali S; Pascal T; Quilot-Turion B; Lambert P; da Silva Linge C; Pacheco I; Bassi D; Stella A; Rossini L
    BMC Genomics; 2017 Jun; 18(1):432. PubMed ID: 28583089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types.
    Zanon L; Falchi R; Santi S; Vizzotto G
    Physiol Plant; 2015 Jun; 154(2):179-93. PubMed ID: 25348206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.