BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33568487)

  • 1. Structural basis for the Mg
    Huang Y; Jin F; Funato Y; Xu Z; Zhu W; Wang J; Sun M; Zhao Y; Yu Y; Miki H; Hattori M
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33568487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and mechanistic analysis of an inhibitor of the CorC Mg
    Huang Y; Mu K; Teng X; Zhao Y; Funato Y; Miki H; Zhu W; Xu Z; Hattori M
    iScience; 2021 Apr; 24(4):102370. PubMed ID: 33912817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emerging roles and therapeutic potential of cyclin M/CorC family of Mg
    Funato Y; Miki H
    J Pharmacol Sci; 2022 Jan; 148(1):14-18. PubMed ID: 34924118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cyclic nucleotide-binding homology domain of the integral membrane protein CNNM mediates dimerization and is required for Mg
    Chen YS; Kozlov G; Fakih R; Funato Y; Miki H; Gehring K
    J Biol Chem; 2018 Dec; 293(52):19998-20007. PubMed ID: 30341174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mg2+-dependent interactions of ATP with the cystathionine-β-synthase (CBS) domains of a magnesium transporter.
    Hirata Y; Funato Y; Takano Y; Miki H
    J Biol Chem; 2014 May; 289(21):14731-9. PubMed ID: 24706765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2.
    Giménez-Mascarell P; Oyenarte I; Hardy S; Breiderhoff T; Stuiver M; Kostantin E; Diercks T; Pey AL; Ereño-Orbea J; Martínez-Chantar ML; Khalaf-Nazzal R; Claverie-Martin F; Müller D; Tremblay ML; Martínez-Cruz LA
    J Biol Chem; 2017 Jan; 292(3):786-801. PubMed ID: 27899452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure.
    Corral-Rodríguez MÁ; Stuiver M; Abascal-Palacios G; Diercks T; Oyenarte I; Ereño-Orbea J; de Opakua AI; Blanco FJ; Encinar JA; Spiwok V; Terashima H; Accardi A; Müller D; Martínez-Cruz LA
    Biochem J; 2014 Nov; 464(1):23-34. PubMed ID: 25184538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and lateral membrane localization of cyclin M3, likely to be involved in renal Mg2+ handling in seawater fish.
    Islam Z; Hayashi N; Inoue H; Umezawa T; Kimura Y; Doi H; Romero MF; Hirose S; Kato A
    Am J Physiol Regul Integr Comp Physiol; 2014 Sep; 307(5):R525-37. PubMed ID: 24965791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mg
    Chen YS; Kozlov G; Fakih R; Yang M; Zhang Z; Kovrigin EL; Gehring K
    Structure; 2020 Mar; 28(3):324-335.e4. PubMed ID: 31864811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Essential Factor for High Mg
    Armitano J; Redder P; Guimarães VA; Linder P
    Front Microbiol; 2016; 7():1888. PubMed ID: 27933050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis.
    Gulerez I; Funato Y; Wu H; Yang M; Kozlov G; Miki H; Gehring K
    EMBO Rep; 2016 Dec; 17(12):1890-1900. PubMed ID: 27856537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Structural Knowledge on the CNNM Family of Magnesium Transport Mediators.
    Giménez-Mascarell P; González-Recio I; Fernández-Rodríguez C; Oyenarte I; Müller D; Martínez-Chantar ML; Martínez-Cruz LA
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30845649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular expression of Mg
    Won J; Kim JH; Oh SB
    Arch Oral Biol; 2018 Dec; 96():182-188. PubMed ID: 30278312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the MgtE Mg2+ transporter.
    Hattori M; Tanaka Y; Fukai S; Ishitani R; Nureki O
    Nature; 2007 Aug; 448(7157):1072-5. PubMed ID: 17700703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-helix influences dimerization of the ATP-binding cassette (ABC) transporter associated with antigen processing 1 (TAP1) nucleotide-binding domain.
    Vakkasoglu AS; Srikant S; Gaudet R
    PLoS One; 2017; 12(5):e0178238. PubMed ID: 28542489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-rater reliability and prospective validation of a clinical prediction rule for SARS-CoV-2 infection.
    Nevel AE; Kline JA
    Acad Emerg Med; 2021 Jul; 28(7):761-767. PubMed ID: 34133794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer.
    Jones PM; George AM
    J Biol Chem; 2007 Aug; 282(31):22793-803. PubMed ID: 17485460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Mutations That Inhibit Two Distinct Steps of the ATP Hydrolysis Cycle Restores Wild-Type Function in the Lipopolysaccharide Transporter and Shows that ATP Binding Triggers Transport.
    Simpson BW; Pahil KS; Owens TW; Lundstedt EA; Davis RM; Kahne D; Ruiz N
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex.
    Samanta S; Ayvaz T; Reyes M; Shuman HA; Chen J; Davidson AL
    J Biol Chem; 2003 Sep; 278(37):35265-71. PubMed ID: 12813052
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.