These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33568734)

  • 1. Coherent amplification and inversion less lasing of surface plasmon polaritons in a negative index metamaterial with a resonant atomic medium.
    Asgarnezhad-Zorgabad S
    Sci Rep; 2021 Feb; 11(1):3450. PubMed ID: 33568734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear frequency conversions via weak surface polaritonic wave breaking in a hybrid plasmonic waveguide.
    Asgarnezhad-Zorgabad S; Sanders BC
    Opt Lett; 2020 Oct; 45(19):5432-5435. PubMed ID: 33001912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directionally-controlled periodic collimated beams of surface plasmon polaritons on metal film in Ag nanowire/Al2O3/Ag film composite structure.
    Wei H; Tian X; Pan D; Chen L; Jia Z; Xu H
    Nano Lett; 2015 Jan; 15(1):560-4. PubMed ID: 25514318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons.
    Brechbühler R; Vonk SJW; Aellen M; Lassaline N; Keitel RC; Cocina A; Rossinelli AA; Rabouw FT; Norris DJ
    ACS Nano; 2021 Jun; 15(6):9935-9944. PubMed ID: 34029074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles.
    Pan BC; Liao Z; Zhao J; Cui TJ
    Opt Express; 2014 Jun; 22(11):13940-50. PubMed ID: 24921585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain.
    Zhang Q; Tan C; Huang G
    Sci Rep; 2016 Feb; 6():21143. PubMed ID: 26891795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit.
    Chen J; Sun C; Li H; Gong Q
    Nanoscale; 2014 Nov; 6(22):13487-93. PubMed ID: 25204379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmonic lasing via the amplification of coupled surface plasmon waves inside dielectric-metal-dielectric waveguides.
    Kumar A; Yu SF; Li XF; Lau SP
    Opt Express; 2008 Sep; 16(20):16113-23. PubMed ID: 18825250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial.
    Gao X; Zhou L; Cui TJ
    Sci Rep; 2015 Mar; 5():9250. PubMed ID: 25783166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum teleportation mediated by surface plasmon polariton.
    Jiang XH; Chen P; Qian KY; Chen ZZ; Xu SQ; Xie YB; Zhu SN; Ma XS
    Sci Rep; 2020 Jul; 10(1):11503. PubMed ID: 32661263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure.
    Liu X; Feng Y; Zhu B; Zhao J; Jiang T
    Sci Rep; 2016 Feb; 6():20448. PubMed ID: 26842340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating surface-plasmon-polariton launching with quasi-cylindrical waves.
    Sun C; Chen J; Yao W; Li H; Gong Q
    Sci Rep; 2015 Jun; 5():11331. PubMed ID: 26061592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spatial plasmonic Bloch oscillations in nanoscale three-dimensional surface plasmon polaritons metal waveguide arrays.
    Lin W; Wang W
    Opt Express; 2019 Aug; 27(17):24591-24600. PubMed ID: 31510346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits.
    Fedyanin DY; Krasavin AV; Arsenin AV; Zayats AV
    Nano Lett; 2012 May; 12(5):2459-63. PubMed ID: 22448893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.
    Chen X; Bhola B; Huang Y; Ho ST
    Opt Express; 2010 Aug; 18(16):17220-38. PubMed ID: 20721111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lasing in plasmon-induced transparency nanocavity.
    Deng ZL; Dong JW
    Opt Express; 2013 Aug; 21(17):20291-302. PubMed ID: 24105575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length.
    Bolger PM; Dickson W; Krasavin AV; Liebscher L; Hickey SG; Skryabin DV; Zayats AV
    Opt Lett; 2010 Apr; 35(8):1197-9. PubMed ID: 20410965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subnatural Linewidth Superradiant Lasing with Cold ^{88}Sr Atoms.
    Kristensen SL; Bohr E; Robinson-Tait J; Zelevinsky T; Thomsen JW; Müller JH
    Phys Rev Lett; 2023 Jun; 130(22):223402. PubMed ID: 37327424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable surface plasmon-polaritons based on quantum coherence.
    Din RU; Zeng XD; Ge GQ; Zubairy MS
    Opt Express; 2019 Jan; 27(1):322-336. PubMed ID: 30645377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.