These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33568734)

  • 21. Tunable surface plasmon-polaritons based on quantum coherence.
    Din RU; Zeng XD; Ge GQ; Zubairy MS
    Opt Express; 2019 Jan; 27(1):322-336. PubMed ID: 30645377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunability of hybridized plasmonic waveguide mediated by surface plasmon polaritons.
    Jiang MM; Chen HY; Shan CX; Shen DZ
    Phys Chem Chem Phys; 2014 Aug; 16(30):16233-40. PubMed ID: 24968699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency.
    Liu Y; Yan J; Shao Y; Pan J; Zhang C; Hao Y; Han G
    Appl Opt; 2016 Mar; 55(7):1720-4. PubMed ID: 26974635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Broadband unidirectional surface plasmon polaritons with low loss.
    Yan J; Shen Q; Zhang H; Li S; Tang H; Shen L
    Opt Express; 2023 Oct; 31(21):35313-35329. PubMed ID: 37859266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.
    Dory C; Fischer KA; Müller K; Lagoudakis KG; Sarmiento T; Rundquist A; Zhang JL; Kelaita Y; Vučković J
    Sci Rep; 2016 Apr; 6():25172. PubMed ID: 27112420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward parametric amplification in plasmonic systems: second harmonic generation enhanced by surface plasmon polaritons.
    Mayy M; Zhu G; Webb AD; Ferguson H; Norris T; Podolskiy VA; Noginov MA
    Opt Express; 2014 Apr; 22(7):7773-82. PubMed ID: 24718153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast dynamics of nanoplasmonic stopped-light lasing.
    Wuestner S; Pickering T; Hamm JM; Page AF; Pusch A; Hess O
    Faraday Discuss; 2015; 178():307-24. PubMed ID: 25778453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental Demonstration of Surface Plasmon Polaritons Reflection and Transmission Effects.
    Zheng L; Zywietz U; Evlyukhin A; Roth B; Overmeyer L; Reinhardt C
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31653086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas.
    Jia H; Liu H; Zhong Y
    Sci Rep; 2015 Feb; 5():8456. PubMed ID: 25678191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Wang W; Watkins N; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; de Pina JM; Schaller RD; Schatz GC; Sargent EH; Odom TW
    ACS Nano; 2020 Mar; 14(3):3426-3433. PubMed ID: 32049478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Q surface-plasmon-polariton whispering-gallery microcavity.
    Min B; Ostby E; Sorger V; Ulin-Avila E; Yang L; Zhang X; Vahala K
    Nature; 2009 Jan; 457(7228):455-8. PubMed ID: 19158793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-plasmon interferences.
    Dheur MC; Devaux E; Ebbesen TW; Baron A; Rodier JC; Hugonin JP; Lalanne P; Greffet JJ; Messin G; Marquier F
    Sci Adv; 2016 Mar; 2(3):e1501574. PubMed ID: 26998521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiation guiding with surface plasmon polaritons.
    Han Z; Bozhevolnyi SI
    Rep Prog Phys; 2013 Jan; 76(1):016402. PubMed ID: 23249644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An electrically-driven GaAs nanowire surface plasmon source.
    Fan P; Colombo C; Huang KC; Krogstrup P; Nygård J; Fontcuberta I Morral A; Brongersma ML
    Nano Lett; 2012 Sep; 12(9):4943-7. PubMed ID: 22924961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bloch oscillations in plasmonic waveguide arrays.
    Block A; Etrich C; Limboeck T; Bleckmann F; Soergel E; Rockstuhl C; Linden S
    Nat Commun; 2014 May; 5():3843. PubMed ID: 24815591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarization-controlled tunable directional coupling of surface plasmon polaritons.
    Lin J; Mueller JP; Wang Q; Yuan G; Antoniou N; Yuan XC; Capasso F
    Science; 2013 Apr; 340(6130):331-4. PubMed ID: 23599488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system.
    Stern L; Grajower M; Levy U
    Nat Commun; 2014 Sep; 5():4865. PubMed ID: 25197947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium.
    Dai D; Shi Y; He S; Wosinski L; Thylen L
    Opt Express; 2011 Jul; 19(14):12925-36. PubMed ID: 21747445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.