These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33568734)

  • 41. Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system.
    Stern L; Grajower M; Levy U
    Nat Commun; 2014 Sep; 5():4865. PubMed ID: 25197947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling.
    Bychek A; Hotter C; Plankensteiner D; Ritsch H
    Open Res Eur; 2021; 1():73. PubMed ID: 37645148
    [No Abstract]   [Full Text] [Related]  

  • 43. Plasmon-resonance emission tailoring of "origami" graphene-covered photonic gratings.
    Araki K; Zhang RZ
    Opt Express; 2020 Jul; 28(15):22791-22802. PubMed ID: 32752534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compact magnetic antennas for directional excitation of surface plasmons.
    Liu Y; Palomba S; Park Y; Zentgraf T; Yin X; Zhang X
    Nano Lett; 2012 Sep; 12(9):4853-8. PubMed ID: 22845720
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmon lasers: coherent nanoscopic light sources.
    Deeb C; Pelouard JL
    Phys Chem Chem Phys; 2017 Nov; 19(44):29731-29741. PubMed ID: 29090287
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium.
    Dai D; Shi Y; He S; Wosinski L; Thylen L
    Opt Express; 2011 Jul; 19(14):12925-36. PubMed ID: 21747445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Few-Cycle Surface Plasmon Polaritons.
    Komatsu K; Pápa Z; Jauk T; Bernecker F; Tóth L; Lackner F; Ernst WE; Ditlbacher H; Krenn JR; Ossiander M; Dombi P; Schultze M
    Nano Lett; 2024 Feb; 24(8):2637-2642. PubMed ID: 38345784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons.
    Fernandez-Bravo A; Wang D; Barnard ES; Teitelboim A; Tajon C; Guan J; Schatz GC; Cohen BE; Chan EM; Schuck PJ; Odom TW
    Nat Mater; 2019 Nov; 18(11):1172-1176. PubMed ID: 31548631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unidirectional Excitation of Radiative-Loss-Free Surface Plasmon Polaritons in PT-Symmetric Systems.
    Wang W; Wang LQ; Xue RD; Chen HL; Guo RP; Liu Y; Chen J
    Phys Rev Lett; 2017 Aug; 119(7):077401. PubMed ID: 28949654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure.
    Chen Z; Hooper IR; Sambles JR
    J Opt Soc Am A Opt Image Sci Vis; 2007 Nov; 24(11):3547-53. PubMed ID: 17975581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmon- and Waveguide-Coupled Fluorescence at the Ultraviolet Region.
    Badugu R; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(25):12084-12095. PubMed ID: 38274198
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergy between plasmonic nanocavities and random lasing modes: a tool to dequench plasmon quenched fluorophore emission.
    Yadav R; Pal S; Jana S; Roy S; Debnath K; Ray SK; Brundavanam MM; Bhaktha B N S
    Phys Chem Chem Phys; 2023 Oct; 25(41):28336-28349. PubMed ID: 37840472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toward broadband, dynamic structuring of a complex plasmonic field.
    Wei S; Si G; Malek M; Earl SK; Du L; Kou SS; Yuan X; Lin J
    Sci Adv; 2018 Jun; 4(6):eaao0533. PubMed ID: 29868639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Launching of surface plasmon polaritons with tunable directions and intensity ratios by phase control of dual fundamental Gaussian beams.
    Kuo CF; Chu SC
    Opt Express; 2017 May; 25(9):10456-10463. PubMed ID: 28468417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Random Lasing via Plasmon-Induced Cavitation of Microbubbles.
    Sato R; Henzie J; Zhang B; Ishii S; Murai S; Takazawa K; Takeda Y
    Nano Lett; 2021 Jul; 21(14):6064-6070. PubMed ID: 34240608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells.
    Zhang X; Li Y; Li T; Lee SY; Feng C; Wang L; Mei T
    Opt Lett; 2010 Sep; 35(18):3075-7. PubMed ID: 20847783
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly Localized Surface Plasmon Nanolasers via Strong Coupling.
    Liao JW; Huang ZT; Wu CH; Gagrani N; Tan HH; Jagadish C; Chen KP; Lu TC
    Nano Lett; 2023 May; 23(10):4359-4366. PubMed ID: 37155142
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.
    Zhang Q; Zhang HC; Wu H; Cui TJ
    Sci Rep; 2015 Nov; 5():16531. PubMed ID: 26552584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultrafast plasmon polaritons doubly resonant on a single silver nanoshell.
    Zhang J; Zhang X
    Opt Express; 2019 Jun; 27(12):17061-17068. PubMed ID: 31252923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.