These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 33568749)
1. ZRSR2 overexpression is a frequent and early event in castration-resistant prostate cancer development. He H; Hao J; Dong X; Wang Y; Xue H; Qu S; Choi SYC; Ci X; Wang Y; Wu R; Shi M; Zhao X; Collins C; Lin D; Wang Y Prostate Cancer Prostatic Dis; 2021 Sep; 24(3):775-785. PubMed ID: 33568749 [TBL] [Abstract][Full Text] [Related]
2. Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. Hao J; Ci X; Xue H; Wu R; Dong X; Choi SYC; He H; Wang Y; Zhang F; Qu S; Zhang F; Haegert AM; Gout PW; Zoubeidi A; Collins C; Gleave ME; Lin D; Wang Y Eur Urol; 2018 Jun; 73(6):949-960. PubMed ID: 29544736 [TBL] [Abstract][Full Text] [Related]
3. Melatonin inhibits lipid accumulation to repress prostate cancer progression by mediating the epigenetic modification of CES1. Zhou L; Zhang C; Yang X; Liu L; Hu J; Hou Y; Tao H; Sugimura H; Chen Z; Wang L; Chen K Clin Transl Med; 2021 Jun; 11(6):e449. PubMed ID: 34185414 [TBL] [Abstract][Full Text] [Related]
4. Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. Rajan P; Sudbery IM; Villasevil ME; Mui E; Fleming J; Davis M; Ahmad I; Edwards J; Sansom OJ; Sims D; Ponting CP; Heger A; McMenemin RM; Pedley ID; Leung HY Eur Urol; 2014 Jul; 66(1):32-9. PubMed ID: 24054872 [TBL] [Abstract][Full Text] [Related]
6. Reactivation of androgen receptor-regulated lipid biosynthesis drives the progression of castration-resistant prostate cancer. Han W; Gao S; Barrett D; Ahmed M; Han D; Macoska JA; He HH; Cai C Oncogene; 2018 Feb; 37(6):710-721. PubMed ID: 29059155 [TBL] [Abstract][Full Text] [Related]
7. BRD4 Regulates Metastatic Potential of Castration-Resistant Prostate Cancer through AHNAK. Shafran JS; Andrieu GP; Györffy B; Denis GV Mol Cancer Res; 2019 Aug; 17(8):1627-1638. PubMed ID: 31110158 [TBL] [Abstract][Full Text] [Related]
8. Anti-androgen therapy induces transcriptomic reprogramming in metastatic castration-resistant prostate cancer in a murine model. Zhao Y; Peng X; Baldwin H; Zhang C; Liu Z; Lu X Biochim Biophys Acta Mol Basis Dis; 2021 Jul; 1867(7):166151. PubMed ID: 33892077 [TBL] [Abstract][Full Text] [Related]
10. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Heidenreich A; Bastian PJ; Bellmunt J; Bolla M; Joniau S; van der Kwast T; Mason M; Matveev V; Wiegel T; Zattoni F; Mottet N; Eur Urol; 2014 Feb; 65(2):467-79. PubMed ID: 24321502 [TBL] [Abstract][Full Text] [Related]
11. Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC). Li Y; Shi H; Zhao Z; Xu M BMC Urol; 2022 Oct; 22(1):162. PubMed ID: 36258196 [TBL] [Abstract][Full Text] [Related]
13. Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription. Jia L; Wu D; Wang Y; You W; Wang Z; Xiao L; Cai G; Xu Z; Zou C; Wang F; Teoh JY; Ng CF; Yu S; Chan FL Oncogene; 2018 Jun; 37(25):3340-3355. PubMed ID: 29555975 [TBL] [Abstract][Full Text] [Related]
14. PiRNA-4447944 promotes castration-resistant growth and metastasis of prostate cancer by inhibiting NEFH expression through forming the piRNA-4447944-PIWIL2-NEFH complex. Peng Q; Chen Y; Xie T; Pu D; Ho VW; Sun J; Liu K; Chan RC; Ding X; Teoh JY; Wang X; Chiu PK; Ng CF Int J Biol Sci; 2024; 20(9):3638-3655. PubMed ID: 38993562 [TBL] [Abstract][Full Text] [Related]
15. MYBL2 disrupts the Hippo-YAP pathway and confers castration resistance and metastatic potential in prostate cancer. Li Q; Wang M; Hu Y; Zhao E; Li J; Ren L; Wang M; Xu Y; Liang Q; Zhang D; Lai Y; Liu S; Peng X; Zhu C; Ye L Theranostics; 2021; 11(12):5794-5812. PubMed ID: 33897882 [No Abstract] [Full Text] [Related]
16. Transcript Levels of Androgen Receptor Variant 7 and Ubiquitin-Conjugating Enzyme 2C in Hormone Sensitive Prostate Cancer and Castration-Resistant Prostate Cancer. Lee CH; Ku JY; Ha JM; Bae SS; Lee JZ; Kim CS; Ha HK Prostate; 2017 Jan; 77(1):60-71. PubMed ID: 27550197 [TBL] [Abstract][Full Text] [Related]
17. Fararjeh AS; Liu YN Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181727 [TBL] [Abstract][Full Text] [Related]
18. Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer. Lam HM; Ouyang B; Chen J; Ying J; Wang J; Wu CL; Jia L; Medvedovic M; Vessella RL; Ho SM Endocr Relat Cancer; 2014; 21(6):903-14. PubMed ID: 25287069 [TBL] [Abstract][Full Text] [Related]
19. CD44 and CD133 protein expression might serve as a prognostic factor for early occurrence castration-resistant prostate cancer. Dwina Y; Zaid LSM; Saraswati M; Rachmadi L; Kekalih A; Rahadiani N; Louisa M; Agustina H; Mochtar CA; Hamid ARAH Prostate; 2024 Jun; 84(8):738-746. PubMed ID: 38528654 [TBL] [Abstract][Full Text] [Related]
20. Aspartate β-hydroxylase targeting in castration-resistant prostate cancer modulates the NOTCH/HIF1α/GSK3β crosstalk. Barboro P; Benelli R; Tosetti F; Costa D; Capaia M; Astigiano S; Venè R; Poggi A; Ferrari N Carcinogenesis; 2020 Sep; 41(9):1246-1252. PubMed ID: 32525968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]