These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A Rapid and Nondestructive Method for Simultaneous Determination of Aflatoxigenic Fungus and Aflatoxin Contamination on Corn Kernels. Tao F; Yao H; Zhu F; Hruska Z; Liu Y; Rajasekaran K; Bhatnagar D J Agric Food Chem; 2019 May; 67(18):5230-5239. PubMed ID: 30986348 [TBL] [Abstract][Full Text] [Related]
3. Use of Visible-Near-Infrared (Vis-NIR) Spectroscopy to Detect Aflatoxin B Tao F; Yao H; Hruska Z; Liu Y; Rajasekaran K; Bhatnagar D Appl Spectrosc; 2019 Apr; 73(4):415-423. PubMed ID: 30700102 [TBL] [Abstract][Full Text] [Related]
4. Feasibility of detecting aflatoxin B1 on inoculated maize kernels surface using Vis/NIR hyperspectral imaging. Wang W; Heitschmidt GW; Windham WR; Feldner P; Ni X; Chu X J Food Sci; 2015 Jan; 80(1):M116-22. PubMed ID: 25495222 [TBL] [Abstract][Full Text] [Related]
5. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection. Zhou Q; Huang W; Liang D; Tian X Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206281 [TBL] [Abstract][Full Text] [Related]
6. Macro-micro exploration on dynamic interaction between aflatoxigenic Aspergillus flavus and maize kernels using Vis/NIR hyperspectral imaging and SEM technology. Lu Y; Jia B; Yoon SC; Ni X; Zhuang H; Guo B; Gold SE; Fountain JC; Glenn AE; Lawrence KC; Zhang F; Wang W; Lu J; Wei C; Jiang H; Luo J Int J Food Microbiol; 2024 May; 416():110661. PubMed ID: 38457888 [TBL] [Abstract][Full Text] [Related]
7. Chemometric strategies for nondestructive and rapid assessment of nitrate content in harvested spinach using Vis-NIR spectroscopy. Mahanti NK; Chakraborty SK; Kotwaliwale N; Vishwakarma AK J Food Sci; 2020 Oct; 85(10):3653-3662. PubMed ID: 32888324 [TBL] [Abstract][Full Text] [Related]
8. Discrimination of Transgenic Maize Kernel Using NIR Hyperspectral Imaging and Multivariate Data Analysis. Feng X; Zhao Y; Zhang C; Cheng P; He Y Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28817075 [TBL] [Abstract][Full Text] [Related]
9. Spatio-temporal distribution patterns and quantitative detection of aflatoxin B Guo Z; Zhang J; Dong H; Sun J; Huang J; Li S; Ma C; Guo Y; Sun X Food Chem; 2023 Oct; 424():136441. PubMed ID: 37244182 [TBL] [Abstract][Full Text] [Related]
10. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Hruska Z; Yao H; Kincaid R; Brown RL; Bhatnagar D; Cleveland TE Front Microbiol; 2017; 8():1718. PubMed ID: 28966606 [TBL] [Abstract][Full Text] [Related]
11. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores. Yao H; Hruska Z; Kincaid R; Brown R; Cleveland T; Bhatnagar D Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):701-9. PubMed ID: 20221935 [TBL] [Abstract][Full Text] [Related]
12. PLS-DA and Vis-NIR spectroscopy based discrimination of abdominal tissues of female rabbits. Yuan H; Liu C; Wang H; Wang L; Dai L Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120887. PubMed ID: 35063825 [TBL] [Abstract][Full Text] [Related]
13. A Low-Cost, Portable Device for Detecting and Sorting Aflatoxin-Contaminated Maize Kernels. Yao H; Zhu F; Kincaid R; Hruska Z; Rajasekaran K Toxins (Basel); 2023 Mar; 15(3):. PubMed ID: 36977088 [TBL] [Abstract][Full Text] [Related]
14. Raman Hyperspectral Imaging as a Potential Tool for Rapid and Nondestructive Identification of Aflatoxin Contamination in Corn Kernels. Tao F; Yao H; Hruska Z; Rajasekaran K; Qin J; Kim M; Chao K J Food Prot; 2024 Sep; 87(9):100335. PubMed ID: 39074611 [TBL] [Abstract][Full Text] [Related]
15. Classification of oat and groat kernels using NIR hyperspectral imaging. Serranti S; Cesare D; Marini F; Bonifazi G Talanta; 2013 Jan; 103():276-84. PubMed ID: 23200388 [TBL] [Abstract][Full Text] [Related]
16. Visible/near-infrared hyperspectral imaging combined with machine learning for identification of ten Chen Z; Xue X; Wu H; Gao H; Wang G; Ni G; Cao T Front Plant Sci; 2024; 15():1413215. PubMed ID: 38882569 [TBL] [Abstract][Full Text] [Related]
17. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Williams P; Geladi P; Fox G; Manley M Anal Chim Acta; 2009 Oct; 653(2):121-30. PubMed ID: 19808104 [TBL] [Abstract][Full Text] [Related]
18. Determination of fumonisin content in maize using near-infrared hyperspectral imaging (NIR-HSI) technology and chemometric methods. Conceição RRP; Queiroz VAV; Medeiros EP; Araújo JB; Araújo DDS; Miguel RA; Stoianoff MAR; Simeone MLF Braz J Biol; 2024; 84():e277974. PubMed ID: 38808784 [TBL] [Abstract][Full Text] [Related]
19. Spatio-temporal patterns of Aspergillus flavus infection and aflatoxin B Lu Y; Jia B; Yoon SC; Zhuang H; Ni X; Guo B; Gold SE; Fountain JC; Glenn AE; Lawrence KC; Zhang H; Guo X; Zhang F; Wang W Food Chem; 2022 Jul; 382():132340. PubMed ID: 35139463 [TBL] [Abstract][Full Text] [Related]
20. Detection of aflatoxins in ground maize using a compact and automated Raman spectroscopy system with machine learning. Kim YK; Qin J; Baek I; Lee KM; Kim SY; Kim S; Chan D; Herrman TJ; Kim N; Kim MS Curr Res Food Sci; 2023; 7():100647. PubMed ID: 38077468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]