These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33569248)

  • 1. A novel IMU-based clinical assessment protocol for Axial Spondyloarthritis: a protocol validation study.
    Franco L; Sengupta R; Wade L; Cazzola D
    PeerJ; 2021; 9():e10623. PubMed ID: 33569248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study.
    Berner K; Cockcroft J; Louw Q
    Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor-software system: A validation study.
    Henschke J; Kaplick H; Wochatz M; Engel T
    Health Sci Rep; 2022 Sep; 5(5):e772. PubMed ID: 35957976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the validity and reliability of inertial measurement units for determining knee and trunk kinematics during athletic landing and cutting movements.
    Chia L; Andersen JT; McKay MJ; Sullivan J; Megalaa T; Pappas E
    J Electromyogr Kinesiol; 2021 Oct; 60():102589. PubMed ID: 34418582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity and reliability of a sensor-based electronic spinal mobility index for axial spondyloarthritis.
    Gardiner PV; Small D; Muñoz-Esquivel K; Condell J; Cuesta-Vargas A; Williams J; Machado PM; Garrido-Castro JL
    Rheumatology (Oxford); 2020 Nov; 59(11):3415-3423. PubMed ID: 32342100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Spinal Mobility Using an Inertial Measurement Unit System: A Reliability Study in Axial Spondyloarthritis.
    O'Grady M; O'Dwyer T; Connolly J; Condell J; Esquivel KM; O'Shea FD; Gardiner P; Wilson F
    Diagnostics (Basel); 2021 Mar; 11(3):. PubMed ID: 33801982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable System Based on Multiple Magnetic and Inertial Measurement Units for Spine Mobility Assessment: A Reliability Study for the Evaluation of Ankylosing Spondylitis.
    Martínez-Hernández A; Perez-Lomelí JS; Burgos-Vargas R; Padilla-Castañeda MA
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of an inertial measurement unit for the assessment of range and quality of movement during head and thoracic spine movements.
    Bellosta-López P; Simonsen MB; Palsson TS; Djurtoft C; Hirata RP; Christensen SWM
    Musculoskelet Sci Pract; 2023 Aug; 66():102826. PubMed ID: 37433251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Inertial Measurement Unit-Based Wireless System for Shoulder Motion Assessment in Patients with Cervical Spinal Cord Injury: A Validation Pilot Study in a Clinical Setting.
    Bravi R; Caputo S; Jayousi S; Martinelli A; Biotti L; Nannini I; Cohen EJ; Quarta E; Grasso S; Lucchesi G; Righi G; Del Popolo G; Mucchi L; Minciacchi D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity and Reliability of Inertial Measurement Units in Active Range of Motion Assessment in the Hip Joint.
    Stołowski Ł; Niedziela M; Lubiatowski B; Lubiatowski P; Piontek T
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Spinal and Pelvic Kinematics Using Inertial Measurement Units in Clinical Subgroups of Persistent Non-Specific Low Back Pain.
    Sheeran L; Al-Amri M; Sparkes V; Davies JL
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent Validity and Reliability of an Inertial Measurement Unit for the Assessment of Craniocervical Range of Motion in Subjects with Cerebral Palsy.
    Carmona-Pérez C; Garrido-Castro JL; Torres Vidal F; Alcaraz-Clariana S; García-Luque L; Alburquerque-Sendín F; Rodrigues-de-Souza DP
    Diagnostics (Basel); 2020 Feb; 10(2):. PubMed ID: 32024117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Attitude and Heading Reference System and Microsoft Kinect for Continuous Measurement of Cervical Range of Motion Compared to the Optical Motion Capture System.
    Song YS; Yang KY; Youn K; Yoon C; Yeom J; Hwang H; Lee J; Kim K
    Ann Rehabil Med; 2016 Aug; 40(4):568-74. PubMed ID: 27606262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of shoulder range of motion using a commercially available wearable sensor-a validation study.
    Chan LYT; Chua CS; Chou SM; Seah RYB; Huang Y; Luo Y; Dacy L; Bin Abd Razak HR
    Mhealth; 2022; 8():30. PubMed ID: 36338310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying lumbar sagittal plane kinematics using a wrist-worn inertial measurement unit.
    Liew BXW; Crisafulli O; Evans DW
    Front Sports Act Living; 2024; 6():1381020. PubMed ID: 38807615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device-A Validation Study.
    Rigoni M; Gill S; Babazadeh S; Elsewaisy O; Gillies H; Nguyen N; Pathirana PN; Page R
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of Inertial Measurement Unit (IMU Sensor) for Measurement of Cervical Spine Motion, Compared with Eight Optoelectronic 3D Cameras Under Spinal Immobilization Devices.
    Liengswangwong W; Lertviboonluk N; Yuksen C; Jamkrajang P; Limroongreungrat W; Mongkolpichayaruk A; Jenpanitpong C; Watcharakitpaisan S; Palee C; Reechaipichitkool P; Thaipasong S
    Med Devices (Auckl); 2024; 17():261-269. PubMed ID: 39050910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine.
    Mousavi SJ; Tromp R; Swann MC; White AP; Anderson DE
    J Biomech; 2018 Oct; 79():248-252. PubMed ID: 30213648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of Spatiotemporal and Kinematic Measures in Functional Exercises Using a Minimal Modeling Inertial Sensor Methodology.
    Hindle BR; Keogh JWL; Lorimer AV
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot Validation Study of Inertial Measurement Units and Markerless Methods for 3D Neck and Trunk Kinematics during a Simulated Surgery Task.
    Zhang C; Greve C; Verkerke GJ; Roossien CC; Houdijk H; Hijmans JM
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.