BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33569252)

  • 1. Rocks of different mineralogy show different temperature characteristics: implications for biodiversity on rocky seashores.
    Janetzki N; Benkendorff K; Fairweather PG
    PeerJ; 2021; 9():e10712. PubMed ID: 33569252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Where three snail species attach while emersed in relation to heterogenous substrate temperatures underneath intertidal boulders.
    Janetzki N; Benkendorff K; Fairweather PG
    PeerJ; 2021; 9():e11675. PubMed ID: 34285831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial heterogeneity of temperature across alpine boulder fields in New South Wales, Australia: multilevel modelling of drivers of microhabitat climate.
    Shi H; Paull D; Rayburg S
    Int J Biometeorol; 2016 Jul; 60(7):965-76. PubMed ID: 26511483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping microhabitat thermal patterns in artificial breakwaters: Alteration of intertidal biodiversity by higher rock temperature.
    Aguilera MA; Arias RM; Manzur T
    Ecol Evol; 2019 Nov; 9(22):12915-12927. PubMed ID: 31788225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithological effects on rocky coastline stability.
    Boye CB; Fiadonu EB
    Heliyon; 2020 Mar; 6(3):e03539. PubMed ID: 32195389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facing up to climate change: Community composition varies with aspect and surface temperature in the rocky intertidal.
    Amstutz A; Firth LB; Spicer JI; Hanley ME
    Mar Environ Res; 2021 Dec; 172():105482. PubMed ID: 34656855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal heterogeneity of selected retreats in cool-temperate viviparous lizards suggests a potential benefit of future climate warming.
    Chukwuka CO; Mello RSR; Cree A; Monks JM
    J Therm Biol; 2021 Apr; 97():102869. PubMed ID: 33863433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-buffering by oyster habitat provides temporal stability for rocky shore communities.
    McAfee D; Bishop MJ; Williams GA
    Mar Environ Res; 2022 Jan; 173():105536. PubMed ID: 34864513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Rocks and Not-So-Hot Rocks on the Seashore: Patterns and Body-Size Dependent Consequences of Microclimatic Variation in Intertidal Zone Boulder Habitat.
    Gunderson AR; Abegaz M; Ceja AY; Lam EK; Souther BF; Boyer K; King EE; You Mak KT; Tsukimura B; Stillman JH
    Integr Org Biol; 2019; 1(1):obz024. PubMed ID: 33791538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential for mountaintop boulder fields to buffer species against extreme heat stress under climate change.
    Shoo LP; Storlie C; Williams YM; Williams SE
    Int J Biometeorol; 2010 Jul; 54(4):475-8. PubMed ID: 20084523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Temporal comparison of the composition and zonation of rocky intertidal organisms at Cocos Island National Park, Pacific, Costa Rica].
    Sibaja-Cordero JA; Cortés J
    Rev Biol Trop; 2010 Dec; 58(4):1387-403. PubMed ID: 21250482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surviving hot summer: Roles of phenotypic plasticity of intertidal mobile species considering microhabitat environmental heterogeneity.
    Sun YX; Hu LS; Dong YW
    J Therm Biol; 2023 Oct; 117():103686. PubMed ID: 37669600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intertidal benthic macrofauna of rare rocky fragments in the Amazon region.
    Morais GC; Lee JT
    Rev Biol Trop; 2014 Mar; 62(1):69-86. PubMed ID: 24912344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal tolerance and climate warming sensitivity in tropical snails.
    Marshall DJ; Rezende EL; Baharuddin N; Choi F; Helmuth B
    Ecol Evol; 2015 Dec; 5(24):5905-19. PubMed ID: 26811764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperoxia increases maximum oxygen consumption and aerobic scope of intertidal fish facing acutely high temperatures.
    McArley TJ; Hickey AJR; Herbert NA
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30254026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B; Murray BR; Webb JK
    J Exp Biol; 2017 Jun; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between the lithology of purple rocks and the pedogenesis of purple soils in the Sichuan Basin, China.
    Zhong S; Han Z; Du J; Ci E; Ni J; Xie D; Wei C
    Sci Rep; 2019 Sep; 9(1):13272. PubMed ID: 31520004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate-driven interactions among rocky intertidal organisms caught between a rock and a hot place.
    Bertness MD; Leonard GH; Levine JM; Bruno JF
    Oecologia; 1999 Aug; 120(3):446-450. PubMed ID: 28308021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach.
    Jueterbock A; Smolina I; Coyer JA; Hoarau G
    Ecol Evol; 2016 Mar; 6(6):1712-24. PubMed ID: 27087933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone.
    Helmuth BS; Hofmann GE
    Biol Bull; 2001 Dec; 201(3):374-84. PubMed ID: 11751249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.