These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 33569580)
1. Computational approaches to amino acid side-chain conformation using combined NMR theoretical and experimental results: leucine-67 in Desulfovibrio vulgaris flavodoxin. San Fabián J; Omar S; García de la Vega JM Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33569580 [TBL] [Abstract][Full Text] [Related]
2. Heteronuclear relayed E.COSY applied to the determination of accurate 3J(HN,C') and 3J(H beta,C') coupling constants in desulfovibrio vulgaris flavodoxin. Schmidt JM; Löhr F; Rüterjans H J Biomol NMR; 1996 Mar; 7(2):142-52. PubMed ID: 8616270 [TBL] [Abstract][Full Text] [Related]
3. Communication: Accurate determination of side-chain torsion angle χ1 in proteins: phenylalanine residues. Suardíaz R; Crespo-Otero R; Pérez C; San Fabián J; García de la Vega JM J Chem Phys; 2011 Feb; 134(6):061101. PubMed ID: 21322654 [TBL] [Abstract][Full Text] [Related]
4. Homonuclear and heteronuclear NMR studies of oxidized Desulfovibrio vulgaris flavodoxin. Sequential assignments and identification of secondary structure elements. Knauf MA; Löhr F; Curley GP; O'Farrell P; Mayhew SG; Müller F; Rüterjans H Eur J Biochem; 1993 Apr; 213(1):167-84. PubMed ID: 8477691 [TBL] [Abstract][Full Text] [Related]
5. NMR investigation of the solution conformation of oxidized flavodoxin from Desulfovibrio vulgaris. Determination of the tertiary structure and detection of protein-bound water molecules. Knauf MA; Löhr F; Blümel M; Mayhew SG; Rüterjans H Eur J Biochem; 1996 Jun; 238(2):423-34. PubMed ID: 8681954 [TBL] [Abstract][Full Text] [Related]
7. 1H and 15N resonance assignments and solution secondary structure of oxidized Desulfovibrio vulgaris flavodoxin determined by heteronuclear three-dimensional NMR spectroscopy. Stockman BJ; Euvrard A; Kloosterman DA; Scahill TA; Swenson RP J Biomol NMR; 1993 Mar; 3(2):133-49. PubMed ID: 8477184 [TBL] [Abstract][Full Text] [Related]
8. Structures and comparison of the Y98H (2.0 A) and Y98W (1.5 A) mutants of flavodoxin (Desulfovibrio vulgaris). Reynolds RA; Watt W; Watenpaugh KD Acta Crystallogr D Biol Crystallogr; 2001 Apr; 57(Pt 4):527-35. PubMed ID: 11264581 [TBL] [Abstract][Full Text] [Related]
9. Structural changes caused by site-directed mutagenesis of tyrosine-98 in Desulfovibrio vulgaris flavodoxin delineated by 1H and 15N NMR spectroscopy: implications for redox potential modulation. Stockman BJ; Richardson TE; Swenson RP Biochemistry; 1994 Dec; 33(51):15298-308. PubMed ID: 7803393 [TBL] [Abstract][Full Text] [Related]
10. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin. McCarthy AA; Walsh MA; Verma CS; O'Connell DP; Reinhold M; Yalloway GN; D'Arcy D; Higgins TM; Voordouw G; Mayhew SG Biochemistry; 2002 Sep; 41(36):10950-62. PubMed ID: 12206666 [TBL] [Abstract][Full Text] [Related]
11. Redox potential difference between Desulfovibrio vulgaris and Clostridium beijerinckii flavodoxins. Ishikita H Biochemistry; 2008 Apr; 47(15):4394-402. PubMed ID: 18355044 [TBL] [Abstract][Full Text] [Related]
12. Evidence for a ternary complex formed between flavodoxin and cytochrome c3: 1H-NMR and molecular modeling studies. Palma PN; Moura I; LeGall J; Van Beeumen J; Wampler JE; Moura JJ Biochemistry; 1994 May; 33(21):6394-407. PubMed ID: 8204572 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough). Zhou Z; Swenson RP Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the refined crystal structures of wild-type (1.34 A) flavodoxin from Desulfovibrio vulgaris and the S35C mutant (1.44 A) at 100 K. Artali R; Bombieri G; Meneghetti F; Gilardi G; Sadeghi SJ; Cavazzini D; Rossi GL Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 2):1787-92. PubMed ID: 12351822 [TBL] [Abstract][Full Text] [Related]
15. Two-dimensional NMR studies of the flavin binding site of Desulfovibrio vulgaris flavodoxin in its three redox states. Peelen S; Vervoort J Arch Biochem Biophys; 1994 Nov; 314(2):291-300. PubMed ID: 7979368 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites. Murray TA; Foster MP; Swenson RP Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199 [TBL] [Abstract][Full Text] [Related]
18. A comparison of the urea-induced unfolding of apoflavodoxin and flavodoxin from Desulfovibrio vulgaris. Nuallain BO; Mayhew SG Eur J Biochem; 2002 Jan; 269(1):212-23. PubMed ID: 11784315 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions. Swenson RP; Krey GD Biochemistry; 1994 Jul; 33(28):8505-14. PubMed ID: 8031784 [TBL] [Abstract][Full Text] [Related]
20. (H)NCAHA and (H)CANNH experiments for the determination of the vicinal coupling constants related to the phi-torsion angle. Löhr F; Rüterjans H J Biomol NMR; 1995 Jan; 5(1):25-36. PubMed ID: 7881271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]