BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33569844)

  • 1. Reduction in sample injection bias using pressure gradients generated on chip.
    Liu Y; Xia L; Dutta D
    Electrophoresis; 2021 Apr; 42(7-8):983-990. PubMed ID: 33569844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microchip device for enhancing capillary zone electrophoresis using pressure-driven backflow.
    Xia L; Dutta D
    Anal Chem; 2012 Nov; 84(22):10058-63. PubMed ID: 23092536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microchip-Based Electrophoretic Separations with a Pressure-Driven Backflow.
    Xia L; Dutta D
    Methods Mol Biol; 2019; 1906():239-249. PubMed ID: 30488397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.
    Xia L; Choi C; Kothekar SC; Dutta D
    Anal Chem; 2016 Jan; 88(1):781-8. PubMed ID: 26636608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated plastic microchip for enhancing electrophoretic separation using tunable pressure-driven backflows.
    Liu Y; Xia L; Xiao X; Li G
    Electrophoresis; 2022 Apr; 43(7-8):892-900. PubMed ID: 35020208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary and microfluidic gradient elution isotachophoresis coupled to capillary zone electrophoresis for femtomolar amino acid detection limits.
    Davis NI; Mamunooru M; Vyas CA; Shackman JG
    Anal Chem; 2009 Jul; 81(13):5452-9. PubMed ID: 19476344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample transport and electrokinetic injection in a microchip device for chemical cytometry.
    Kovarik ML; Lai HH; Xiong JC; Allbritton NL
    Electrophoresis; 2011 Nov; 32(22):3180-7. PubMed ID: 22012764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic flow counterbalanced capillary electrophoresis.
    Xia L; Dutta D
    Analyst; 2013 Apr; 138(7):2126-33. PubMed ID: 23420375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward 10,000-fold sensitivity improvement of oligosaccharides in capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump combined with field-amplified sample injection.
    Kawai T; Ueda M; Fukushima Y; Sueyoshi K; Kitagawa F; Otsuka K
    Electrophoresis; 2013 Aug; 34(16):2303-10. PubMed ID: 23580137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis.
    Palmer J; Burgi DS; Munro NJ; Landers JP
    Anal Chem; 2001 Feb; 73(4):725-31. PubMed ID: 11248884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-through sampling for electrophoresis-based microchips and their applications for protein analysis.
    Chen SH; Lin YH; Wang LY; Lin CC; Lee GB
    Anal Chem; 2002 Oct; 74(19):5146-53. PubMed ID: 12380842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of large-volume sample stacking with an electroosmotic flow pump with field-amplified sample injection on cross-channel chips.
    Kitagawa F; Ishiguro T; Tateyama M; Nukatsuka I; Sueyoshi K; Kawai T; Otsuka K
    Electrophoresis; 2017 Aug; 38(16):2075-2080. PubMed ID: 28474737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research progress of electrically-driven force based online rapid separation and enrichment techniques].
    Liu Y; Chen Y; Xiao X; Xia L; Li G
    Se Pu; 2020 Oct; 38(10):1197-1205. PubMed ID: 34213116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.
    Sahore V; Kumar S; Rogers CI; Jensen JK; Sonker M; Woolley AT
    Anal Bioanal Chem; 2016 Jan; 408(2):599-607. PubMed ID: 26537925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic flow assisted pseudophase to pseudophase microextraction for stacking in capillary zone electrophoresis.
    Vaas APJP; Quirino JP
    J Chromatogr A; 2021 Dec; 1660():462654. PubMed ID: 34788671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion separations with pressure-assisted capillary electrophoresis using a sequential injection analysis manifold and contactless conductivity detection.
    Mai TD; Hauser PC
    Electrophoresis; 2011 Nov; 32(21):3000-7. PubMed ID: 21997519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Sensitive Analysis in Capillary Electrophoresis Using Large-volume Sample Stacking with an Electroosmotic Flow Pump Combined with Field-amplified Sample Injection.
    Kitagawa F; Wakagi S; Takegawa Y; Nukatsuka I
    Anal Sci; 2019 Aug; 35(8):889-893. PubMed ID: 31006720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single potential electrophoresis microchip with reduced bias using pressure pulse injection.
    Lacharme F; Gijs MA
    Electrophoresis; 2006 Jul; 27(14):2924-32. PubMed ID: 16639704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices.
    Ha JW
    J Anal Methods Chem; 2017; 2017():7495348. PubMed ID: 28326222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels.
    Xia L; Deb R; Yanagisawa N; Dutta D
    Anal Chim Acta; 2022 Nov; 1233():340476. PubMed ID: 36283775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.