These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33569871)

  • 1. High-Density Lewis Acid Sites in Porous Single-Crystalline Monoliths to Enhance Propane Dehydrogenation at Reduced Temperatures.
    Lin G; Su Y; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9311-9315. PubMed ID: 33569871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twisted Surfaces in Porous Single Crystals to Deliver Enhanced Catalytic Activity and Stability.
    Lin G; Li H; Xie K
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16440-16444. PubMed ID: 32485028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Zeng L; Mu R; Xiong C; Zhao ZJ; Zhao C; Pei C; Peng L; Luo J; Fan LS; Gong J
    J Am Chem Soc; 2019 Nov; 141(47):18653-18657. PubMed ID: 31703164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites.
    Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG
    Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous Single-Crystalline Monolith to Enhance Catalytic Activity and Stability.
    Yu X; Cheng F; Duan X; Xie K
    Research (Wash D C); 2022; 2022():9861518. PubMed ID: 35928301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma Tuning Local Environment of Hexagonal Boron Nitride for Oxidative Dehydrogenation of Propane.
    Liu Z; Yan B; Meng S; Liu R; Lu WD; Sheng J; Yi Y; Lu AH
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19691-19695. PubMed ID: 34197682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation.
    Yang T; Zhong Y; Li J; Ma R; Yan H; Liu Y; He Y; Li D
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33045-33055. PubMed ID: 34232010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and ab initio investigations of H2S-assisted propane oxidative dehydrogenation reactions.
    Premji ZA; Lo JM; Clark PD
    J Phys Chem A; 2014 Mar; 118(9):1541-56. PubMed ID: 24524187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in a Solid Oxide Electrolyzer.
    Ye L; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21746-21750. PubMed ID: 34346541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting Propane Dehydrogenation by the Regioselective Distribution of Subnanometric CoO Clusters in MFI Zeolite Nanosheets.
    Lv X; Yang M; Song S; Xia M; Li J; Wei Y; Xu C; Song W; Liu J
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36898088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling acid catalysis and selective oxidation over MoO
    Wang X; Pei C; Zhao ZJ; Chen S; Li X; Sun J; Song H; Sun G; Wang W; Chang X; Zhang X; Gong J
    Nat Commun; 2023 Apr; 14(1):2039. PubMed ID: 37041149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective and Stable Non-Noble-Metal Intermetallic Compound Catalyst for the Direct Dehydrogenation of Propane to Propylene.
    He Y; Song Y; Cullen DA; Laursen S
    J Am Chem Soc; 2018 Oct; 140(43):14010-14014. PubMed ID: 30346723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical insights into non-oxidative propane dehydrogenation over Fe
    Wang P; Senftle TP
    Phys Chem Chem Phys; 2021 Jan; 23(2):1401-1413. PubMed ID: 33393543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of lithium ions in MgO lattice: surface characterization by infrared spectroscopy and reactivity towards oxidative conversion of propane.
    Trionfetti C; Babich IV; Seshan K; Lefferts L
    Langmuir; 2008 Aug; 24(15):8220-8. PubMed ID: 18597504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane.
    Li Z; Peters AW; Platero-Prats AE; Liu J; Kung CW; Noh H; DeStefano MR; Schweitzer NM; Chapman KW; Hupp JT; Farha OK
    J Am Chem Soc; 2017 Oct; 139(42):15251-15258. PubMed ID: 28976757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation.
    Sun G; Zhao ZJ; Mu R; Zha S; Li L; Chen S; Zang K; Luo J; Li Z; Purdy SC; Kropf AJ; Miller JT; Zeng L; Gong J
    Nat Commun; 2018 Oct; 9(1):4454. PubMed ID: 30367052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Active and Selective Sites for Propane Dehydrogenation in Zeolite Ga-BEA.
    Ni L; Khare R; Bermejo-Deval R; Zhao R; Tao L; Liu Y; Lercher JA
    J Am Chem Soc; 2022 Jul; 144(27):12347-12356. PubMed ID: 35771043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-oxidative Propane Dehydrogenation.
    Kong N; Fan X; Liu F; Wang L; Lin H; Li Y; Lee ST
    ACS Nano; 2020 May; 14(5):5772-5779. PubMed ID: 32374154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature propane oxidative dehydrogenation over UiO-66 supported vanadia catalysts: Role of support confinement effects.
    Farzaneh A; Moghaddam MS
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):404-416. PubMed ID: 36166967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.