These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33570053)

  • 1. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach.
    Barrera G; Allia P; Tiberto P
    Nanoscale; 2021 Feb; 13(7):4103-4121. PubMed ID: 33570053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: interplay between intrinsic properties and dipolar interactions.
    Hadadian Y; Ramos AP; Pavan TZ
    Sci Rep; 2019 Dec; 9(1):18048. PubMed ID: 31792227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia.
    Coral DF; Zélis PM; Marciello M; Morales Mdel P; Craievich A; Sánchez FH; van Raap MB
    Langmuir; 2016 Feb; 32(5):1201-13. PubMed ID: 26751761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.
    Munoz-Menendez C; Conde-Leboran I; Baldomir D; Chubykalo-Fesenko O; Serantes D
    Phys Chem Chem Phys; 2015 Nov; 17(41):27812-20. PubMed ID: 26437746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.
    Branquinho LC; Carrião MS; Costa AS; Zufelato N; Sousa MH; Miotto R; Ivkov R; Bakuzis AF
    Sci Rep; 2013 Oct; 3():2887. PubMed ID: 24096272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heating ability of elongated magnetic nanoparticles.
    Gubanova EM; Usov NA; Oleinikov VA
    Beilstein J Nanotechnol; 2021; 12():1404-1412. PubMed ID: 35028264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heating ability of magnetic nanoparticles with cubic and combined anisotropy.
    Usov NA; Nesmeyanov MS; Gubanova EM; Epshtein NB
    Beilstein J Nanotechnol; 2019; 10():305-314. PubMed ID: 30800569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crossover From Individual to Collective Magnetism in Dense Nanoparticle Systems: Local Anisotropy Versus Dipolar Interactions.
    Sánchez EH; Vasilakaki M; Lee SS; Normile PS; Andersson MS; Mathieu R; López-Ortega A; Pichon BP; Peddis D; Binns C; Nordblad P; Trohidou K; Nogués J; De Toro JA
    Small; 2022 Jul; 18(28):e2106762. PubMed ID: 35689307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Brownian heating by interacting magnetic dipolar particles.
    Chalopin Y; Bacri JC; Gazeau F; Devaud M
    Sci Rep; 2017 May; 7(1):1656. PubMed ID: 28490761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles.
    Ruta S; Chantrell R; Hovorka O
    Sci Rep; 2015 Mar; 5():9090. PubMed ID: 25766365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of magnetic dipolar interactions of maghemite nanoparticles embedded in polyelectrolyte layer-by-layer films.
    Paterno LG; Sinnecker EH; Soler MA; Sinnecker JP; Novak MA; Morais PC
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6672-8. PubMed ID: 22962805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms.
    Barrera G; Allia P; Tiberto P
    Nanoscale Adv; 2020 Oct; 2(10):4652-4664. PubMed ID: 36132915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic susceptibility of a concentrated ferrofluid: The role of interparticle interactions.
    Lebedev AV; Stepanov VI; Kuznetsov AA; Ivanov AO; Pshenichnikov AF
    Phys Rev E; 2019 Sep; 100(3-1):032605. PubMed ID: 31639971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia.
    Mamiya H; Fukumoto H; Cuya Huaman JL; Suzuki K; Miyamura H; Balachandran J
    ACS Nano; 2020 Jul; 14(7):8421-8432. PubMed ID: 32574042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Dipolar Interactions on the Determination of the Effective Magnetic Anisotropy in Iron Oxide Nanoparticles.
    García-Acevedo P; González-Gómez MA; Arnosa-Prieto Á; de Castro-Alves L; Piñeiro Y; Rivas J
    Adv Sci (Weinh); 2023 Feb; 10(5):e2203397. PubMed ID: 36509677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayered inorganic-organic microdisks as ideal carriers for high magnetothermal actuation: assembling ferrimagnetic nanoparticles devoid of dipolar interactions.
    Castellanos-Rubio I; Munshi R; Qin Y; Eason DB; Orue I; Insausti M; Pralle A
    Nanoscale; 2018 Nov; 10(46):21879-21892. PubMed ID: 30457620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia.
    Myrovali E; Maniotis N; Makridis A; Terzopoulou A; Ntomprougkidis V; Simeonidis K; Sakellari D; Kalogirou O; Samaras T; Salikhov R; Spasova M; Farle M; Wiedwald U; Angelakeris M
    Sci Rep; 2016 Nov; 6():37934. PubMed ID: 27897195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles.
    Ovejero JG; Cabrera D; Carrey J; Valdivielso T; Salas G; Teran FJ
    Phys Chem Chem Phys; 2016 Apr; 18(16):10954-63. PubMed ID: 27041536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.