These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33570061)

  • 1. Hybridized surface lattice modes in intercalated 3-disk plasmonic crystals for high figure-of-merit plasmonic sensing.
    Tobing LYM; Soehartono AM; Mueller AD; Yong KT; Fan W; Zhang DH
    Nanoscale; 2021 Feb; 13(7):4092-4102. PubMed ID: 33570061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Figure of Merit (FOM) of Bragg Modes in Au-Coated Nanodisk Arrays for Plasmonic Sensing.
    Couture M; Brulé T; Laing S; Cui W; Sarkar M; Charron B; Faulds K; Peng W; Canva M; Masson JF
    Small; 2017 Oct; 13(38):. PubMed ID: 28834166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic hybridization generation in self-aligned disk/hole nanocavities for multi-resonance sensing.
    Chu S; Liang Y; Yuan H; Gao H; Yu L; Wang Q; Peng W
    Opt Express; 2020 Nov; 28(24):36455-36465. PubMed ID: 33379738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic sensors with an ultra-high figure of merit.
    Liu Z; Liu G; Liu X; Fu G
    Nanotechnology; 2020 Mar; 31(11):115208. PubMed ID: 31751986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P; Schaafsma MC; Rodriguez SR; Zhang Y; Crego-Calama M; Brongersma SH; Gómez Rivas J
    ACS Nano; 2011 Jun; 5(6):5151-7. PubMed ID: 21574624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridized metamaterial platform for nano-scale sensing.
    Park JH; Kodigala A; Ndao A; Kanté B
    Opt Express; 2017 Jun; 25(13):15590-15598. PubMed ID: 28788981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor.
    Ren W; Dai Y; Cai H; Ding H; Pan N; Wang X
    Opt Express; 2013 Apr; 21(8):10251-8. PubMed ID: 23609734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Plasmonic Sensor Array with Ultrahigh Figures of Merit and Resonance Linewidths down to 3 nm.
    Liu B; Chen S; Zhang J; Yao X; Zhong J; Lin H; Huang T; Yang Z; Zhu J; Liu S; Lienau C; Wang L; Ren B
    Adv Mater; 2018 Mar; 30(12):e1706031. PubMed ID: 29405444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative investigation of sensing behaviors between gap and lattice plasmon modes in a metallic nanoring array.
    Liang Y; Li L; Lu M; Yuan H; Long Z; Peng W; Xu T
    Nanoscale; 2018 Jan; 10(2):548-555. PubMed ID: 29185577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigations of a near-infrared plasmonic refractive index sensor with extremely high figure of merit and low loss based on the hybrid plasmonic waveguide-nanocavity system.
    Chen L; Liu Y; Yu Z; Wu D; Ma R; Zhang Y; Ye H
    Opt Express; 2016 Oct; 24(20):23260-23270. PubMed ID: 27828390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing Mid-Infrared Gold-Based Plasmonic Slot Waveguides for CO
    Saeidi P; Jakoby B; Pühringer G; Tortschanoff A; Stocker G; Dubois F; Spettel J; Grille T; Jannesari R
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical analysis of ultrahigh figure of merit sensing in plasmonic waveguides with a multimode stub.
    He Z; Li H; Li B; Chen Z; Xu H; Zheng M
    Opt Lett; 2016 Nov; 41(22):5206-5209. PubMed ID: 27842094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic crescent nanoarray-based surface lattice resonance sensor with a high figure of merit.
    Wang L; Wang Q; Wang TQ; Zhao WM; Yin XY; Jiang JX; Zhang SS
    Nanoscale; 2022 Apr; 14(16):6144-6151. PubMed ID: 35388826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid metal-graphene plasmonic sensor for multi-spectral sensing in both near- and mid-infrared ranges.
    Hong Q; Luo J; Wen C; Zhang J; Zhu Z; Qin S; Yuan X
    Opt Express; 2019 Nov; 27(24):35914-35924. PubMed ID: 31878756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization invariant plasmonic nanostructures for sensing applications.
    Tobing LYM; Goh GY; Mueller AD; Ke L; Luo Y; Zhang DH
    Sci Rep; 2017 Aug; 7(1):7539. PubMed ID: 28790439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
    Gallinet B; Martin OJ
    ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal and plasmonic nanohole based label-free biodetection.
    Cetin AE; Topkaya SN
    Biosens Bioelectron; 2019 May; 132():196-202. PubMed ID: 30875631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.