BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33570209)

  • 1. Mobilization of electroosmotic flow markers in capillary zone electrophoresis.
    Martínková E; Křížek T; Kubíčková A; Coufal P
    Electrophoresis; 2021 Apr; 42(7-8):932-938. PubMed ID: 33570209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoretic mobilities of neutral analytes and electroosmotic flow markers in aqueous solutions of Hofmeister salts.
    Křížek T; Kubíčková A; Hladílková J; Coufal P; Heyda J; Jungwirth P
    Electrophoresis; 2014 Mar; 35(5):617-24. PubMed ID: 24338984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the ionic strength of acidic background electrolytes on the separation of proteins by capillary electrophoresis.
    Bekri S; Leclercq L; Cottet H
    J Chromatogr A; 2016 Feb; 1432():145-51. PubMed ID: 26780847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of accurate electroosmotic mobility and analyte effective mobility values in the presence of charged interacting agents in capillary electrophoresis.
    Williams BA; Vigh G
    Anal Chem; 1997 Nov; 69(21):4445-51. PubMed ID: 21639176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent cationic copolymer coatings allowing tunable electroosmotic flow for optimization of capillary electrophoretic separations.
    Konášová R; Butnariu M; Šolínová V; Kašička V; Koval D
    Anal Chim Acta; 2021 Sep; 1178():338789. PubMed ID: 34482877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent anionic copolymer coatings with tunable electroosmotic flow for optimization of capillary electrophoretic separations.
    Šolínová V; Tůma P; Butnariu M; Kašička V; Koval D
    Electrophoresis; 2022 Oct; 43(20):1953-1962. PubMed ID: 35986681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow changes due to interactions of background electrolyte counter-ions with polyethyleneimine coating in capillary zone electrophoresis of proteins.
    Spanilá M; Pazourek J; Havel J
    J Sep Sci; 2006 Sep; 29(14):2234-40. PubMed ID: 17069254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of the electroosmotic flow of electrolyte systems for nonaqueous capillary electrophoresis.
    Grob M; Steiner F
    Electrophoresis; 2002 Jun; 23(12):1853-61. PubMed ID: 12116128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic Liquids in Capillary Electrophoresis.
    Holzgrabe U; Wahl J
    Methods Mol Biol; 2016; 1483():131-53. PubMed ID: 27645735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling behavior in on-chip field-amplified sample stacking.
    Dubey K; Gupta A; Bahga SS
    Electrophoresis; 2019 Mar; 40(5):730-739. PubMed ID: 30628102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
    Foley JP; Blackney DM; Ennis EJ
    J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual UV-absorbing background electrolytes for simultaneous separation and detection of small cations and anions by capillary zone electrophoresis.
    Xiong X; Li SF
    Electrophoresis; 1998 Sep; 19(12):2243-51. PubMed ID: 9761211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems.
    Thormann W; Zhang CX; Caslavska J; Gebauer P; Mosher RA
    Anal Chem; 1998 Feb; 70(3):549-62. PubMed ID: 21644753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response patterns with indirect UV detection in capillary zone electrophoresis.
    Lu B; Westerlund D
    Electrophoresis; 1998 Jul; 19(10):1683-90. PubMed ID: 9719546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic control of chiral separation in capillary zone electrophoresis.
    Hong S; Lee CS
    Electrophoresis; 1995 Nov; 16(11):2132-6. PubMed ID: 8748745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug.
    Šesták J; Thormann W
    J Chromatogr A; 2017 Aug; 1512():124-132. PubMed ID: 28712552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of electrophoretic focusing on an inverse electromigration dispersion profile.
    Gebauer P
    Electrophoresis; 2020 Apr; 41(7-8):471-480. PubMed ID: 31550388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of electroosmotic markers in aqueous and nonaqueous capillary electrophoresis.
    Hellqvist A; Hedeland Y; Pettersson C
    Electrophoresis; 2013 Dec; 34(24):3252-9. PubMed ID: 24123115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic analysis of cations using large-volume sample stacking with an electroosmotic flow pump using capillaries coated with neutral and cationic polymers.
    Kawai T; Ito J; Sueyoshi K; Kitagawa F; Otsuka K
    J Chromatogr A; 2012 Dec; 1267():65-73. PubMed ID: 23084485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.