These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33570209)

  • 1. Mobilization of electroosmotic flow markers in capillary zone electrophoresis.
    Martínková E; Křížek T; Kubíčková A; Coufal P
    Electrophoresis; 2021 Apr; 42(7-8):932-938. PubMed ID: 33570209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoretic mobilities of neutral analytes and electroosmotic flow markers in aqueous solutions of Hofmeister salts.
    Křížek T; Kubíčková A; Hladílková J; Coufal P; Heyda J; Jungwirth P
    Electrophoresis; 2014 Mar; 35(5):617-24. PubMed ID: 24338984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the ionic strength of acidic background electrolytes on the separation of proteins by capillary electrophoresis.
    Bekri S; Leclercq L; Cottet H
    J Chromatogr A; 2016 Feb; 1432():145-51. PubMed ID: 26780847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of accurate electroosmotic mobility and analyte effective mobility values in the presence of charged interacting agents in capillary electrophoresis.
    Williams BA; Vigh G
    Anal Chem; 1997 Nov; 69(21):4445-51. PubMed ID: 21639176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent cationic copolymer coatings allowing tunable electroosmotic flow for optimization of capillary electrophoretic separations.
    Konášová R; Butnariu M; Šolínová V; Kašička V; Koval D
    Anal Chim Acta; 2021 Sep; 1178():338789. PubMed ID: 34482877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent anionic copolymer coatings with tunable electroosmotic flow for optimization of capillary electrophoretic separations.
    Šolínová V; Tůma P; Butnariu M; Kašička V; Koval D
    Electrophoresis; 2022 Oct; 43(20):1953-1962. PubMed ID: 35986681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow changes due to interactions of background electrolyte counter-ions with polyethyleneimine coating in capillary zone electrophoresis of proteins.
    Spanilá M; Pazourek J; Havel J
    J Sep Sci; 2006 Sep; 29(14):2234-40. PubMed ID: 17069254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of the electroosmotic flow of electrolyte systems for nonaqueous capillary electrophoresis.
    Grob M; Steiner F
    Electrophoresis; 2002 Jun; 23(12):1853-61. PubMed ID: 12116128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic Liquids in Capillary Electrophoresis.
    Holzgrabe U; Wahl J
    Methods Mol Biol; 2016; 1483():131-53. PubMed ID: 27645735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling behavior in on-chip field-amplified sample stacking.
    Dubey K; Gupta A; Bahga SS
    Electrophoresis; 2019 Mar; 40(5):730-739. PubMed ID: 30628102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
    Foley JP; Blackney DM; Ennis EJ
    J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual UV-absorbing background electrolytes for simultaneous separation and detection of small cations and anions by capillary zone electrophoresis.
    Xiong X; Li SF
    Electrophoresis; 1998 Sep; 19(12):2243-51. PubMed ID: 9761211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems.
    Thormann W; Zhang CX; Caslavska J; Gebauer P; Mosher RA
    Anal Chem; 1998 Feb; 70(3):549-62. PubMed ID: 21644753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response patterns with indirect UV detection in capillary zone electrophoresis.
    Lu B; Westerlund D
    Electrophoresis; 1998 Jul; 19(10):1683-90. PubMed ID: 9719546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic control of chiral separation in capillary zone electrophoresis.
    Hong S; Lee CS
    Electrophoresis; 1995 Nov; 16(11):2132-6. PubMed ID: 8748745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug.
    Šesták J; Thormann W
    J Chromatogr A; 2017 Aug; 1512():124-132. PubMed ID: 28712552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of electrophoretic focusing on an inverse electromigration dispersion profile.
    Gebauer P
    Electrophoresis; 2020 Apr; 41(7-8):471-480. PubMed ID: 31550388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of electroosmotic markers in aqueous and nonaqueous capillary electrophoresis.
    Hellqvist A; Hedeland Y; Pettersson C
    Electrophoresis; 2013 Dec; 34(24):3252-9. PubMed ID: 24123115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic analysis of cations using large-volume sample stacking with an electroosmotic flow pump using capillaries coated with neutral and cationic polymers.
    Kawai T; Ito J; Sueyoshi K; Kitagawa F; Otsuka K
    J Chromatogr A; 2012 Dec; 1267():65-73. PubMed ID: 23084485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.