These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33570606)

  • 1. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits.
    Ren Y; Li M; Guo S; Sun H; Zhao J; Zhang J; Liu G; He H; Tian S; Yu Y; Gong G; Zhang H; Zhang X; Alseekh S; Fernie AR; Scheller HV; Xu Y
    Plant Cell; 2021 Jul; 33(5):1554-1573. PubMed ID: 33570606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Tonoplast Sugar Transporter Underlies a Sugar Accumulation QTL in Watermelon.
    Ren Y; Guo S; Zhang J; He H; Sun H; Tian S; Gong G; Zhang H; Levi A; Tadmor Y; Xu Y
    Plant Physiol; 2018 Jan; 176(1):836-850. PubMed ID: 29118248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits.
    Guo S; Zhao S; Sun H; Wang X; Wu S; Lin T; Ren Y; Gao L; Deng Y; Zhang J; Lu X; Zhang H; Shang J; Gong G; Wen C; He N; Tian S; Li M; Liu J; Wang Y; Zhu Y; Jarret R; Levi A; Zhang X; Huang S; Fei Z; Liu W; Xu Y
    Nat Genet; 2019 Nov; 51(11):1616-1623. PubMed ID: 31676863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CsAGA1 and CsAGA2 Mediate RFO Hydrolysis in Partially Distinct Manner in Cucumber Fruits.
    Hua B; Zhang M; Zhang J; Dai H; Zhang Z; Miao M
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClSnRK2.3 negatively regulates watermelon fruit ripening and sugar accumulation.
    Wang J; Wang Y; Yu Y; Zhang J; Ren Y; Tian S; Li M; Liao S; Guo S; Gong G; Zhang H; Xu Y
    J Integr Plant Biol; 2023 Oct; 65(10):2336-2348. PubMed ID: 37219233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization shift of a sugar transporter contributes to phloem unloading in sweet watermelons.
    Ren Y; Sun H; Zong M; Guo S; Ren Z; Zhao J; Li M; Zhang J; Tian S; Wang J; Yu Y; Gong G; Zhang H; He H; Li L; Zhang X; Liu F; Fei Z; Xu Y
    New Phytol; 2020 Sep; 227(6):1858-1871. PubMed ID: 32453446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Genome-Wide Study and Expression Analysis of
    Xuan C; Lan G; Si F; Zeng Z; Wang C; Yadav V; Wei C; Zhang X
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon.
    Zhang J; Guo S; Ren Y; Zhang H; Gong G; Zhou M; Wang G; Zong M; He H; Liu F; Xu Y
    New Phytol; 2017 Feb; 213(3):1208-1221. PubMed ID: 27787901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and emergence of the sweet dessert watermelon, Citrullus lanatus.
    Paris HS
    Ann Bot; 2015 Aug; 116(2):133-48. PubMed ID: 26141130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.
    Yativ M; Harary I; Wolf S
    J Plant Physiol; 2010 May; 167(8):589-96. PubMed ID: 20036442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.
    Gao L; Zhao S; Lu X; He N; Zhu H; Dou J; Liu W
    PLoS One; 2018; 13(1):e0190096. PubMed ID: 29324867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit.
    Shammai A; Petreikov M; Yeselson Y; Faigenboim A; Moy-Komemi M; Cohen S; Cohen D; Besaulov E; Efrati A; Houminer N; Bar M; Ast T; Schuldiner M; Klemens PAW; Neuhaus E; Baxter CJ; Rickett D; Bonnet J; White R; Giovannoni JJ; Levin I; Schaffer A
    Plant J; 2018 Oct; 96(2):343-357. PubMed ID: 30044900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution.
    Wang Y; Guo S; Tian S; Zhang J; Ren Y; Sun H; Gong G; Zhang H; Xu Y
    PLoS One; 2017; 12(6):e0179944. PubMed ID: 28662086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NF-Y Transcription Factor Family in Watermelon: Re-Characterization, Assembly of ClNF-Y Complexes, Hormone- and Pathogen-Inducible Expression and Putative Functions in Disease Resistance.
    Jiang S; Wang H; Wen Y; Liang J; Li D; Song F
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids.
    Garcia-Lozano M; Dutta SK; Natarajan P; Tomason YR; Lopez C; Katam R; Levi A; Nimmakayala P; Reddy UK
    Plant Mol Biol; 2020 Jan; 102(1-2):213-223. PubMed ID: 31845303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus).
    Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W
    BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Genome-Wide Analysis of the
    Subburaj S; Tu L; Lee K; Park GS; Lee H; Chun JP; Lim YP; Park MW; McGregor C; Lee GJ
    Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32987959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits.
    Akashi K; Mifune Y; Morita K; Ishitsuka S; Tsujimoto H; Ishihara T
    J Sci Food Agric; 2017 Jan; 97(2):479-487. PubMed ID: 27060681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression in developing watermelon fruit.
    Wechter WP; Levi A; Harris KR; Davis AR; Fei Z; Katzir N; Giovannoni JJ; Salman-Minkov A; Hernandez A; Thimmapuram J; Tadmor Y; Portnoy V; Trebitsh T
    BMC Genomics; 2008 Jun; 9():275. PubMed ID: 18534026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome wide analysis of kinesin gene family in Citrullus lanatus reveals an essential role in early fruit development.
    Tian S; Jiang J; Xu GQ; Wang T; Liu Q; Chen X; Liu M; Yuan L
    BMC Plant Biol; 2021 May; 21(1):210. PubMed ID: 33971813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.