These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 33570753)
1. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. Hiraide H; Tobimatsu Y; Yoshinaga A; Lam PY; Kobayashi M; Matsushita Y; Fukushima K; Takabe K New Phytol; 2021 Jun; 230(6):2186-2199. PubMed ID: 33570753 [TBL] [Abstract][Full Text] [Related]
2. In situ detection of laccase activity and immunolocalisation of a compression-wood-specific laccase (CoLac1) in differentiating xylem of Chamaecyparis obtusa. Hiraide H; Yoshida M; Sato S; Yamamoto H Funct Plant Biol; 2016 Jun; 43(6):542-552. PubMed ID: 32480484 [TBL] [Abstract][Full Text] [Related]
3. Changes in xylem tissue and laccase transcript abundance associated with posture recovery in Chamaecyparis obtusa saplings growing on an incline. Sato S; Hiraide H; Yoshida M; Yamamoto H Funct Plant Biol; 2013 Jul; 40(6):637-643. PubMed ID: 32481137 [TBL] [Abstract][Full Text] [Related]
4. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Anterola AM; Lewis NG Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514 [TBL] [Abstract][Full Text] [Related]
5. Relative deposition of xylan and 8-5'-linked lignin structure in Chamaecyparis obtusa, as revealed by double immunolabeling by using monoclonal antibodies. Kiyoto S; Yoshinaga A; Takabe K Planta; 2015 Jan; 241(1):243-56. PubMed ID: 25269398 [TBL] [Abstract][Full Text] [Related]
6. Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation. Donaldson LA; Knox JP Plant Physiol; 2012 Feb; 158(2):642-53. PubMed ID: 22147521 [TBL] [Abstract][Full Text] [Related]
7. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques. Zhang Z; Ma J; Ji Z; Xu F Microsc Microanal; 2012 Dec; 18(6):1459-66. PubMed ID: 23237521 [TBL] [Abstract][Full Text] [Related]
8. Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. Donaldson L; Radotić K; Kalauzi A; Djikanović D; Jeremić M J Struct Biol; 2010 Jan; 169(1):106-15. PubMed ID: 19747548 [TBL] [Abstract][Full Text] [Related]
9. Modification of lignin for the production of new compounded materials. Hüttermann A; Mai C; Kharazipour A Appl Microbiol Biotechnol; 2001 May; 55(4):387-94. PubMed ID: 11398916 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Gutiérrez A; Rencoret J; Cadena EM; Rico A; Barth D; del Río JC; Martínez AT Bioresour Technol; 2012 Sep; 119():114-22. PubMed ID: 22728191 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. Donaldson LA; Radotic K J Microsc; 2013 Aug; 251(2):178-87. PubMed ID: 23763341 [TBL] [Abstract][Full Text] [Related]
12. Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry. Zhou C; Li Q; Chiang VL; Lucia LA; Griffis DP Anal Chem; 2011 Sep; 83(18):7020-6. PubMed ID: 21851065 [TBL] [Abstract][Full Text] [Related]
13. Location and characterization of lignin in tracheid cell walls of radiata pine (Pinus radiata D. Don) compression woods. Zhang M; Lapierre C; Nouxman NL; Nieuwoudt MK; Smith BG; Chavan RR; McArdle BH; Harris PJ Plant Physiol Biochem; 2017 Sep; 118():187-198. PubMed ID: 28646704 [TBL] [Abstract][Full Text] [Related]
14. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples. Goacher RE; Braham EJ; Michienzi CL; Flick RM; Yakunin AF; Master ER Physiol Plant; 2018 Sep; 164(1):5-16. PubMed ID: 29286544 [TBL] [Abstract][Full Text] [Related]
15. Cavitation of intercellular spaces is critical to establishment of hydraulic properties of compression wood of Chamaecyparis obtusa seedlings. Nakaba S; Hirai A; Kudo K; Yamagishi Y; Yamane K; Kuroda K; Nugroho WD; Kitin P; Funada R Ann Bot; 2016 Mar; 117(3):457-63. PubMed ID: 26818592 [TBL] [Abstract][Full Text] [Related]
17. Spatial regulation of monolignol biosynthesis and laccase genes control developmental and stress-related lignin in flax. Le Roy J; Blervacq AS; Créach A; Huss B; Hawkins S; Neutelings G BMC Plant Biol; 2017 Jul; 17(1):124. PubMed ID: 28705193 [TBL] [Abstract][Full Text] [Related]
18. Modelling of the hygroelastic behaviour of normal and compression wood tracheids. Joffre T; Neagu RC; Bardage SL; Gamstedt EK J Struct Biol; 2014 Jan; 185(1):89-98. PubMed ID: 24184469 [TBL] [Abstract][Full Text] [Related]
19. Tracking monolignols during wood development in lodgepole pine. Kaneda M; Rensing KH; Wong JC; Banno B; Mansfield SD; Samuels AL Plant Physiol; 2008 Aug; 147(4):1750-60. PubMed ID: 18550683 [TBL] [Abstract][Full Text] [Related]
20. Immunolocalization of beta-1-4-galactan and its relationship with lignin distribution in developing compression wood of Cryptomeria japonica. Kim JS; Awano T; Yoshinaga A; Takabe K Planta; 2010 Jun; 232(1):109-19. PubMed ID: 20376677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]