These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 33570817)

  • 1. Global progress in incorporating climate adaptation into land protection for biodiversity since Aichi targets.
    Carrasco L; Papeş M; Sheldon KS; Giam X
    Glob Chang Biol; 2021 May; 27(9):1788-1801. PubMed ID: 33570817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change.
    Carroll C; Ray JC
    Glob Chang Biol; 2021 Aug; 27(15):3395-3414. PubMed ID: 33852186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk from future climate change to Pakistan's protected area network: A composite analysis for hotspot identification.
    Siddique MT; García Molinos J
    Sci Total Environ; 2024 Mar; 916():169948. PubMed ID: 38211866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating climate change adaptation into marine protected area planning.
    Wilson KL; Tittensor DP; Worm B; Lotze HK
    Glob Chang Biol; 2020 Jun; 26(6):3251-3267. PubMed ID: 32222010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.
    Carroll C; Roberts DR; Michalak JL; Lawler JJ; Nielsen SE; Stralberg D; Hamann A; Mcrae BH; Wang T
    Glob Chang Biol; 2017 Nov; 23(11):4508-4520. PubMed ID: 28267245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and protection of climatic refugia in North America.
    Michalak JL; Lawler JJ; Roberts DR; Carroll C
    Conserv Biol; 2018 Dec; 32(6):1414-1425. PubMed ID: 29744936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial heterogeneity and temporal stability characterize future climatic refugia in Mediterranean Europe.
    Doxa A; Kamarianakis Y; Mazaris AD
    Glob Chang Biol; 2022 Apr; 28(7):2413-2424. PubMed ID: 34981617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4D marine conservation networks: Combining 3D prioritization of present and future biodiversity with climatic refugia.
    Doxa A; Almpanidou V; Katsanevakis S; Queirós AM; Kaschner K; Garilao C; Kesner-Reyes K; Mazaris AD
    Glob Chang Biol; 2022 Aug; 28(15):4577-4588. PubMed ID: 35583810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planning for climate change through additions to a national protected area network: implications for cost and configuration.
    Lawler JJ; Rinnan DS; Michalak JL; Withey JC; Randels CR; Possingham HP
    Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1794):20190117. PubMed ID: 31983335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rewilding in the face of climate change.
    Carroll C; Noss RF
    Conserv Biol; 2021 Feb; 35(1):155-167. PubMed ID: 32557877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protected area designation and management in a world of climate change: A review of recommendations.
    Ranius T; Widenfalk LA; Seedre M; Lindman L; Felton A; Hämäläinen A; Filyushkina A; Öckinger E
    Ambio; 2023 Jan; 52(1):68-80. PubMed ID: 35997987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding China's protected areas network to enhance resilience of climate connectivity.
    Xu D; Peng J; Dong J; Jiang H; Liu M; Luo Y; Xu Z
    Sci Bull (Beijing); 2024 Jul; 69(14):2273-2280. PubMed ID: 38724302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicted climate shifts within terrestrial protected areas worldwide.
    Hoffmann S; Irl SDH; Beierkuhnlein C
    Nat Commun; 2019 Oct; 10(1):4787. PubMed ID: 31636257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The climatic risk of Amazonian protected areas is driven by climate velocity until 2050.
    Torres-Amaral C; Anjos LJSD; Vieira ICG; de Souza EB
    PLoS One; 2023; 18(6):e0286457. PubMed ID: 37347789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change adaptation benefits of potential conservation partnerships.
    Monahan WB; Theobald DM
    PLoS One; 2018; 13(2):e0191468. PubMed ID: 29489817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of climate and land-cover change on the conservation status of gibbons.
    Yang L; Chen T; Shi KC; Zhang L; Lwin N; Fan PF
    Conserv Biol; 2023 Feb; 37(1):e14045. PubMed ID: 36511895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A climate-change vulnerability and adaptation assessment for Brazil's protected areas.
    Lapola DM; Silva JMCD; Braga DR; Carpigiani L; Ogawa F; Torres RR; Barbosa LCF; Ometto JPHB; Joly CA
    Conserv Biol; 2020 Apr; 34(2):427-437. PubMed ID: 31386221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying climate change refugia for South American biodiversity.
    Sales LP; Pires MM
    Conserv Biol; 2023 Aug; 37(4):e14087. PubMed ID: 36919472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Notable conservation gaps for biodiversity, ecosystem services and climate change adaptation on the Tibetan Plateau, China.
    Ji J; Yu Y; Zhang Z; Hua T; Zhu Y; Zhao H
    Sci Total Environ; 2023 Oct; 895():165032. PubMed ID: 37355118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A landscape-scale framework to identify refugia from multiple stressors.
    Rojas IM; Jennings MK; Conlisk E; Syphard AD; Mikesell J; Kinoshita AM; West K; Stow D; Storey E; De Guzman ME; Foote D; Warneke A; Pairis A; Ryan S; Flint LE; Flint AL; Lewison RL
    Conserv Biol; 2022 Feb; 36(1):e13834. PubMed ID: 34476838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.