These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33570947)

  • 1. On the Nature of Nucleobase Stacking in RNA: A Comprehensive Survey of Its Structural Variability and a Systematic Classification of Associated Interactions.
    Jhunjhunwala A; Ali Z; Bhattacharya S; Halder A; Mitra A; Sharma P
    J Chem Inf Model; 2021 Mar; 61(3):1470-1480. PubMed ID: 33570947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Going beyond base-pairs: topology-based characterization of base-multiplets in RNA.
    Bhattacharya S; Jhunjhunwala A; Halder A; Bhattacharyya D; Mitra A
    RNA; 2019 May; 25(5):573-589. PubMed ID: 30792229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric nomenclature and classification of RNA base pairs.
    Leontis NB; Westhof E
    RNA; 2001 Apr; 7(4):499-512. PubMed ID: 11345429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pairing interactions between nucleobases and ligands in aptamer:ligand complexes of riboswitches: crystal structure analysis, classification, optimal structures, and accurate interaction energies.
    Seelam PP; Mitra A; Sharma P
    RNA; 2019 Oct; 25(10):1274-1290. PubMed ID: 31315914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of RNA structures based on hydrogen bond and base-base stacking patterns: application for NMR structures.
    Takasu A; Watanabe K; Kawai G
    J Biochem; 2002 Aug; 132(2):211-5. PubMed ID: 12153717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Energetic Features of Base-Base Stacking Contacts in RNA.
    Ali Z; Goyal A; Jhunjhunwala A; Mitra A; Trant JF; Sharma P
    J Chem Inf Model; 2023 Jan; 63(2):655-669. PubMed ID: 36635230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organometallic ruthenium(II) diamine anticancer complexes: arene-nucleobase stacking and stereospecific hydrogen-bonding in guanine adducts.
    Chen H; Parkinson JA; Parsons S; Coxall RA; Gould RO; Sadler PJ
    J Am Chem Soc; 2002 Mar; 124(12):3064-82. PubMed ID: 11902898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The non-Watson-Crick base pairs and their associated isostericity matrices.
    Leontis NB; Stombaugh J; Westhof E
    Nucleic Acids Res; 2002 Aug; 30(16):3497-531. PubMed ID: 12177293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs.
    Chawla M; Chermak E; Zhang Q; Bujnicki JM; Oliva R; Cavallo L
    Nucleic Acids Res; 2017 Nov; 45(19):11019-11032. PubMed ID: 28977572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of nucleobase interactions in RNA structure and dynamics.
    Bottaro S; Di Palma F; Bussi G
    Nucleic Acids Res; 2014 Dec; 42(21):13306-14. PubMed ID: 25355509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motifs in nucleic acids: molecular mechanics restraints for base pairing and base stacking.
    Harvey SC; Wang C; Teletchea S; Lavery R
    J Comput Chem; 2003 Jan; 24(1):1-9. PubMed ID: 12483670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the limits of nucleobase expansion: computational design of naphthohomologated (xx-) purines and comparison to the natural and xDNA purines.
    Sharma P; Lait LA; Wetmore SD
    Phys Chem Chem Phys; 2013 Oct; 15(37):15538-49. PubMed ID: 23942832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClaRNA: a classifier of contacts in RNA 3D structures based on a comparative analysis of various classification schemes.
    Waleń T; Chojnowski G; Gierski P; Bujnicki JM
    Nucleic Acids Res; 2014 Oct; 42(19):e151. PubMed ID: 25159614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base-intercalated and base-wedged stacking elements in 3D-structure of RNA and RNA-protein complexes.
    Baulin E; Metelev V; Bogdanov A
    Nucleic Acids Res; 2020 Sep; 48(15):8675-8685. PubMed ID: 32687167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of 3D structural character of RNA by hydrogen bond and base stacking.
    Takasu A; Watanabe K; Kawai G
    Nucleic Acids Symp Ser; 2000; (44):227-8. PubMed ID: 12903351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.