These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33570947)

  • 21. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.
    Sedova A; Banavali NK
    Biochemistry; 2017 Mar; 56(10):1426-1443. PubMed ID: 28187685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Noncanonical Base Pairing on RNA Folding: Structural Context and Spatial Arrangements of G·A Pairs.
    Olson WK; Li S; Kaukonen T; Colasanti AV; Xin Y; Lu XJ
    Biochemistry; 2019 May; 58(20):2474-2487. PubMed ID: 31008589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative analysis of nucleic acid three-dimensional structures.
    Gendron P; Lemieux S; Major F
    J Mol Biol; 2001 May; 308(5):919-36. PubMed ID: 11352582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleobase pairing in expanded Watson-Crick-like genetic information systems.
    Geyer CR; Battersby TR; Benner SA
    Structure; 2003 Dec; 11(12):1485-98. PubMed ID: 14656433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive survey and geometric classification of base triples in RNA structures.
    Abu Almakarem AS; Petrov AI; Stombaugh J; Zirbel CL; Leontis NB
    Nucleic Acids Res; 2012 Feb; 40(4):1407-23. PubMed ID: 22053086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural landscape of base pairs containing post-transcriptional modifications in RNA.
    Seelam PP; Sharma P; Mitra A
    RNA; 2017 Jun; 23(6):847-859. PubMed ID: 28341704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire.
    Lemieux S; Major F
    Nucleic Acids Res; 2002 Oct; 30(19):4250-63. PubMed ID: 12364604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.
    Jain N; Zhao L; Liu JD; Xia T
    Biochemistry; 2010 May; 49(17):3703-14. PubMed ID: 20345178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural diversity and isomorphism of hydrogen-bonded base interactions in nucleic acids.
    Walberer BJ; Cheng AC; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):767-80. PubMed ID: 12654262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noncovalent interactions involving histidine: the effect of charge on pi-pi stacking and T-shaped interactions with the DNA nucleobases.
    Churchill CD; Wetmore SD
    J Phys Chem B; 2009 Dec; 113(49):16046-58. PubMed ID: 19904910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-grained model for predicting RNA folding thermodynamics.
    Denesyuk NA; Thirumalai D
    J Phys Chem B; 2013 May; 117(17):4901-11. PubMed ID: 23527587
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs.
    Mondal M; Halder S; Chakrabarti J; Bhattacharyya D
    Biopolymers; 2016 Apr; 105(4):212-26. PubMed ID: 26600167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical calculations of base-base interactions in nucleic acids: I. Stacking interactions in free bases.
    Gupta G; Sasisekharan V
    Nucleic Acids Res; 1978 May; 5(5):1639-53. PubMed ID: 662697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dynamic structural basis of differential enhancement of conformational stability by 5'- and 3'-dangling ends in RNA.
    Liu JD; Zhao L; Xia T
    Biochemistry; 2008 Jun; 47(22):5962-75. PubMed ID: 18457418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. π-Cooperativity effect on the base stacking interactions in DNA: is there a novel stabilization factor coupled with base pairing H-bonds?
    Karabıyık H; Sevinçek R; Karabıyık H
    Phys Chem Chem Phys; 2014 Aug; 16(29):15527-38. PubMed ID: 24953339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.