These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33570947)

  • 41. On the role of the cis Hoogsteen:sugar-edge family of base pairs in platforms and triplets-quantum chemical insights into RNA structural biology.
    Sharma P; Sponer JE; Sponer J; Sharma S; Bhattacharyya D; Mitra A
    J Phys Chem B; 2010 Mar; 114(9):3307-20. PubMed ID: 20163171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CompAnnotate: a comparative approach to annotate base-pairing interactions in RNA 3D structures.
    Islam S; Ge P; Zhang S
    Nucleic Acids Res; 2017 Aug; 45(14):e136. PubMed ID: 28641399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNAMotifScanX: a graph alignment approach for RNA structural motif identification.
    Zhong C; Zhang S
    RNA; 2015 Mar; 21(3):333-46. PubMed ID: 25595715
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aromatic Base Stacking in DNA: From ab initio Calculations to Molecular Dynamics Simulations.
    Sponer J; Berger I; Spačková N; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 2000; 17 Suppl 1():1-24. PubMed ID: 22607400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. yDNA versus yyDNA pyrimidines: computational analysis of the effects of unidirectional ring expansion on the preferred sugar-base orientation, hydrogen-bonding interactions and stacking abilities.
    Sharma P; Lait LA; Wetmore SD
    Phys Chem Chem Phys; 2013 Feb; 15(7):2435-48. PubMed ID: 23303174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs.
    Ieong S; Kao MY; Lam TW; Sung WK; Yiu SM
    J Comput Biol; 2003; 10(6):981-95. PubMed ID: 14980021
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of base stacking and hydrogen bonding on the fluorescence of 2-aminopurine and pyrrolocytosine in nucleic acids.
    Hardman SJ; Thompson KC
    Biochemistry; 2006 Aug; 45(30):9145-55. PubMed ID: 16866360
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures.
    Lu XJ; Olson WK
    Nucleic Acids Res; 2003 Sep; 31(17):5108-21. PubMed ID: 12930962
    [TBL] [Abstract][Full Text] [Related]  

  • 50. B-DNA structure and stability: the role of hydrogen bonding, π-π stacking interactions, twist-angle, and solvation.
    Poater J; Swart M; Bickelhaupt FM; Fonseca Guerra C
    Org Biomol Chem; 2014 Jul; 12(26):4691-700. PubMed ID: 24871817
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extracting stacking interaction parameters for RNA from the data set of native structures.
    Dima RI; Hyeon C; Thirumalai D
    J Mol Biol; 2005 Mar; 347(1):53-69. PubMed ID: 15733917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tools for the automatic identification and classification of RNA base pairs.
    Yang H; Jossinet F; Leontis N; Chen L; Westbrook J; Berman H; Westhof E
    Nucleic Acids Res; 2003 Jul; 31(13):3450-60. PubMed ID: 12824344
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of RNA double helix-propagation at atomic resolution.
    Mohan S; Hsiao C; VanDeusen H; Gallagher R; Krohn E; Kalahar B; Wartell RM; Williams LD
    J Phys Chem B; 2009 Mar; 113(9):2614-23. PubMed ID: 19708202
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How do size-expanded DNA nucleobases enhance duplex stability? Computational analysis of the hydrogen-bonding and stacking ability of xDNA bases.
    McConnell TL; Wetmore SD
    J Phys Chem B; 2007 Mar; 111(11):2999-3009. PubMed ID: 17388411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dispersion interactions between urea and nucleobases contribute to the destabilization of RNA by urea in aqueous solution.
    Kasavajhala K; Bikkina S; Patil I; MacKerell AD; Priyakumar UD
    J Phys Chem B; 2015 Mar; 119(9):3755-61. PubMed ID: 25668757
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Predicting RNA secondary structures including pseudoknots by covariance with stacking and minimum free energy].
    Yang J; Luo Z; Fang X; Wang J; Tang K
    Sheng Wu Gong Cheng Xue Bao; 2008 Apr; 24(4):659-64. PubMed ID: 18616179
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of RNA sequence and structure in RNA--protein interactions.
    Gupta A; Gribskov M
    J Mol Biol; 2011 Jun; 409(4):574-87. PubMed ID: 21514302
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The use of interatomic contact areas to quantify discrepancies between RNA 3D models and reference structures.
    Olechnovič K; Venclovas C
    Nucleic Acids Res; 2014 May; 42(9):5407-15. PubMed ID: 24623815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluating Hydrogen Bonds and Base Stacking of Single, Tandem and Terminal GU Mismatches in RNA with a Mesoscopic Model.
    Amarante TD; Weber G
    J Chem Inf Model; 2016 Jan; 56(1):101-9. PubMed ID: 26624232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.