BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33571486)

  • 21. Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function.
    Figeac N; Zammit PS
    Cell Signal; 2015 Aug; 27(8):1652-65. PubMed ID: 25866367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic integration of Wnt/β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs.
    Stevens ML; Chaturvedi P; Rankin SA; Macdonald M; Jagannathan S; Yukawa M; Barski A; Zorn AM
    Development; 2017 Apr; 144(7):1283-1295. PubMed ID: 28219948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Generation of Organoids for Studying Wnt Signaling.
    Drost J; Artegiani B; Clevers H
    Methods Mol Biol; 2016; 1481():141-59. PubMed ID: 27590160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells.
    Katoh Y; Katoh M
    Int J Mol Med; 2006 Mar; 17(3):529-32. PubMed ID: 16465403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Ketogenic Enzyme HMGCS2 by Wnt/β-catenin/PPARγ Pathway in Intestinal Cells.
    Kim JT; Li C; Weiss HL; Zhou Y; Liu C; Wang Q; Evers BM
    Cells; 2019 Sep; 8(9):. PubMed ID: 31546785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualization and exploration of Tcf/Lef function using a highly responsive Wnt/β-catenin signaling-reporter transgenic zebrafish.
    Shimizu N; Kawakami K; Ishitani T
    Dev Biol; 2012 Oct; 370(1):71-85. PubMed ID: 22842099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential sensitivity to Wnt signaling gradients in human gastric organoids derived from corpus and antrum.
    McGowan KP; Delgado E; Hibdon ES; Samuelson LC
    Am J Physiol Gastrointest Liver Physiol; 2023 Aug; 325(2):G158-G173. PubMed ID: 37338119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. β-catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF4 in colon cancer cells.
    Voloshanenko O; Schwartz U; Kranz D; Rauscher B; Linnebacher M; Augustin I; Boutros M
    Sci Rep; 2018 Feb; 8(1):3178. PubMed ID: 29453334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer.
    Gregorieff A; Liu Y; Inanlou MR; Khomchuk Y; Wrana JL
    Nature; 2015 Oct; 526(7575):715-8. PubMed ID: 26503053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-cell transcriptome analysis identifies distinct cell types and niche signaling in a primary gastric organoid model.
    Chen J; Lau BT; Andor N; Grimes SM; Handy C; Wood-Bouwens C; Ji HP
    Sci Rep; 2019 Mar; 9(1):4536. PubMed ID: 30872643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Central Role of Wnt Signaling and Organoid Technology in Personalizing Anticancer Therapy.
    Vincan E; Schwab RHM; Flanagan DJ; Moselen JM; Tran BM; Barker N; Phesse TJ
    Prog Mol Biol Transl Sci; 2018 Jan; 153():299-319. PubMed ID: 29389521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. VBP1 modulates Wnt/β-catenin signaling by mediating the stability of the transcription factors TCF/LEFs.
    Zhang H; Rong X; Wang C; Liu Y; Lu L; Li Y; Zhao C; Zhou J
    J Biol Chem; 2020 Dec; 295(49):16826-16839. PubMed ID: 32989053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of the canonical WNT signaling pathway promotes ovarian surface epithelial proliferation without inducing β-catenin/Tcf-mediated reporter expression.
    Usongo M; Li X; Farookhi R
    Dev Dyn; 2013 Mar; 242(3):291-300. PubMed ID: 23239518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells.
    Wang P; Mokhtari R; Pedrosa E; Kirschenbaum M; Bayrak C; Zheng D; Lachman HM
    Mol Autism; 2017; 8():11. PubMed ID: 28321286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a mouse homolog of the human BTEB2 transcription factor as a beta-catenin-independent Wnt-1-responsive gene.
    Ziemer LT; Pennica D; Levine AJ
    Mol Cell Biol; 2001 Jan; 21(2):562-74. PubMed ID: 11134343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noncanonical Wnt signaling plays an important role in modulating canonical Wnt-regulated stemness, proliferation and terminal differentiation of hepatic progenitors.
    Fan J; Wei Q; Liao J; Zou Y; Song D; Xiong D; Ma C; Hu X; Qu X; Chen L; Li L; Yu Y; Yu X; Zhang Z; Zhao C; Zeng Z; Zhang R; Yan S; Wu T; Wu X; Shu Y; Lei J; Li Y; Zhang W; Haydon RC; Luu HH; Huang A; He TC; Tang H
    Oncotarget; 2017 Apr; 8(16):27105-27119. PubMed ID: 28404920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Yin-Yang of TCF/beta-catenin signaling.
    Barker N; Morin PJ; Clevers H
    Adv Cancer Res; 2000; 77():1-24. PubMed ID: 10549354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas.
    Koch A; Hrychyk A; Hartmann W; Waha A; Mikeska T; Waha A; Schüller U; Sörensen N; Berthold F; Goodyer CG; Wiestler OD; Birchmeier W; Behrens J; Pietsch T
    Int J Cancer; 2007 Jul; 121(2):284-91. PubMed ID: 17373666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alternative Wnt Signaling Activates YAP/TAZ.
    Park HW; Kim YC; Yu B; Moroishi T; Mo JS; Plouffe SW; Meng Z; Lin KC; Yu FX; Alexander CM; Wang CY; Guan KL
    Cell; 2015 Aug; 162(4):780-94. PubMed ID: 26276632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids.
    Kessler M; Hoffmann K; Brinkmann V; Thieck O; Jackisch S; Toelle B; Berger H; Mollenkopf HJ; Mangler M; Sehouli J; Fotopoulou C; Meyer TF
    Nat Commun; 2015 Dec; 6():8989. PubMed ID: 26643275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.