BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33571936)

  • 1. IPG-based field potential measurement of cultured cardiomyocytes for optogenetic applications.
    Wang TW; Sung YL; Chu HW; Lin SF
    Biosens Bioelectron; 2021 May; 179():113060. PubMed ID: 33571936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic modulation of cardiac action potential properties may prevent arrhythmogenesis in short and long QT syndromes.
    Gruber A; Edri O; Huber I; Arbel G; Gepstein A; Shiti A; Shaheen N; Chorna S; Landesberg M; Gepstein L
    JCI Insight; 2021 Jun; 6(11):. PubMed ID: 34100384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology.
    Fernández MC; Kopton RA; Simon-Chica A; Madl J; Hilgendorf I; Zgierski-Johnston CM; Schneider-Warme F
    Methods Mol Biol; 2021; 2191():287-307. PubMed ID: 32865751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromechanical Assessment of Optogenetically Modulated Cardiomyocyte Activity.
    Kopton RA; Buchmann C; Moss R; Kohl P; Peyronnet R; Schneider-Warme F
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes.
    Björk S; Ojala EA; Nordström T; Ahola A; Liljeström M; Hyttinen J; Kankuri E; Mervaala E
    Front Physiol; 2017; 8():884. PubMed ID: 29163220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic gene transfer enables optogenetic pacing of mouse hearts.
    Vogt CC; Bruegmann T; Malan D; Ottersbach A; Roell W; Fleischmann BK; Sasse P
    Cardiovasc Res; 2015 May; 106(2):338-43. PubMed ID: 25587047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models.
    Boyle PM; Murphy MJ; Karathanos TV; Zahid S; Blake RC; Trayanova NA
    J Physiol; 2018 Jan; 596(2):181-196. PubMed ID: 29193078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging.
    Dempsey GT; Chaudhary KW; Atwater N; Nguyen C; Brown BS; McNeish JD; Cohen AE; Kralj JM
    J Pharmacol Toxicol Methods; 2016; 81():240-50. PubMed ID: 27184445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable low-cost macroscopic mapping system for all-optical cardiac electrophysiology.
    Heinson YW; Han JL; Entcheva E
    J Biomed Opt; 2023 Jan; 28(1):016001. PubMed ID: 36636698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-low power deep sustained optogenetic excitation of human ventricular cardiomyocytes with red-shifted opsins: a computational study.
    Pyari G; Bansal H; Roy S
    J Physiol; 2022 Nov; 600(21):4653-4676. PubMed ID: 36068951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes.
    Bingen BO; Engels MC; Schalij MJ; Jangsangthong W; Neshati Z; Feola I; Ypey DL; Askar SF; Panfilov AV; Pijnappels DA; de Vries AA
    Cardiovasc Res; 2014 Oct; 104(1):194-205. PubMed ID: 25082848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology.
    Junge S; Schmieder F; Sasse P; Czarske J; Torres-Mapa ML; Heisterkamp A
    J Biophotonics; 2022 Jul; 15(7):e202100352. PubMed ID: 35397155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
    Nussinovitch U; Shinnawi R; Gepstein L
    Cardiovasc Res; 2014 Apr; 102(1):176-87. PubMed ID: 24518144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Proarrhythmic Potential of Drugs in Optogenetically Paced Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
    Patel D; Stohlman J; Dang Q; Strauss DG; Blinova K
    Toxicol Sci; 2019 Jul; 170(1):167-179. PubMed ID: 30912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical mapping of optogenetically shaped cardiac action potentials.
    Park SA; Lee SR; Tung L; Yue DT
    Sci Rep; 2014 Aug; 4():6125. PubMed ID: 25135113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2.
    Zaglia T; Pianca N; Borile G; Da Broi F; Richter C; Campione M; Lehnart SE; Luther S; Corrado D; Miquerol L; Mongillo M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):E4495-504. PubMed ID: 26204914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management.
    Nyns ECA; Kip A; Bart CI; Plomp JJ; Zeppenfeld K; Schalij MJ; de Vries AAF; Pijnappels DA
    Eur Heart J; 2017 Jul; 38(27):2132-2136. PubMed ID: 28011703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion channelrhodopsins for inhibitory cardiac optogenetics.
    Govorunova EG; Cunha SR; Sineshchekov OA; Spudich JL
    Sci Rep; 2016 Sep; 6():33530. PubMed ID: 27628215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.
    Williams JC; Xu J; Lu Z; Klimas A; Chen X; Ambrosi CM; Cohen IS; Entcheva E
    PLoS Comput Biol; 2013; 9(9):e1003220. PubMed ID: 24068903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.